Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38475174

ABSTRACT

The Message Queuing Telemetry Transport (MQTT) protocol stands out as one of the foremost and widely recognized messaging protocols in the field. It is often used to transfer and manage data between devices and is extensively employed for applications ranging from smart homes and industrial automation to healthcare and transportation systems. However, it lacks built-in security features, thereby making it vulnerable to many types of attacks such as man-in-the-middle (MitM), buffer overflow, pre-shared key, brute force authentication, malformed data, distributed denial-of-service (DDoS) attacks, and MQTT publish flood attacks. Traditional methods for detecting MQTT attacks, such as deep neural networks (DNNs), k-nearest neighbor (KNN), linear discriminant analysis (LDA), and fuzzy logic, may exist. The increasing prevalence of device connectivity, sensor usage, and environmental scalability become the most challenging aspects that novel detection approaches need to address. This paper presents a new solution that leverages an H2O-based distributed machine learning (ML) framework to improve the security of the MQTT protocol in networks, particularly in IoT environments. The proposed approach leverages the strengths of the H2O algorithm and architecture to enable real-time monitoring and distributed detection and classification of anomalous behavior (deviations from expected activity patterns). By harnessing H2O's algorithms, the identification and timely mitigation of potential security threats are achieved. Various H2O algorithms, including random forests, generalized linear models (GLMs), gradient boosting machine (GBM), XGBoost, and the deep learning (DL) algorithm, have been assessed to determine the most reliable algorithm in terms of detection performance. This study encompasses the development of the proposed algorithm, including implementation details and evaluation results. To assess the proposed model, various evaluation metrics such as mean squared error (MSE), root-mean-square error (RMSE), mean per class error (MCE), and log loss are employed. The results obtained indicate that the H2OXGBoost algorithm outperforms other H2O models in terms of accuracy. This research contributes to the advancement of secure IoT networks and offers a practical approach to enhancing the security of MQTT communication channels through distributed detection and classification techniques.

2.
Sensors (Basel) ; 23(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37631671

ABSTRACT

The internet of things (IoT) technology presents an intelligent way to improve our lives and contributes to many fields such as industry, communications, agriculture, etc. Unfortunately, IoT networks are exposed to many attacks that may destroy the entire network and consume network resources. This paper aims to propose intelligent process automation and an auto-configured intelligent automation detection model (IADM) to detect and prevent malicious network traffic and behaviors/events at distributed multi-access edge computing in an IoT-based smart city. The proposed model consists of two phases. The first phase relies on the intelligent process automation (IPA) technique and contains five modules named, specifically, dataset collection and pre-processing module, intelligent automation detection module, analysis module, detection rules and action module, and database module. In the first phase, each module composes an intelligent connecting module to give feedback reports about each module and send information to the next modules. Therefore, any change in each process can be easily detected and labeled as an intrusion. The intelligent connection module (ICM) may reduce the search time, increase the speed, and increase the security level. The second phase is the dynamic adaptation of the attack detection model based on reinforcement one-shot learning. The first phase is based on a multi-classification technique using Random Forest Trees (RFT), k-Nearest Neighbor (K-NN), J48, AdaBoost, and Bagging. The second phase can learn the new changed behaviors based on reinforced learning to detect zero-day attacks and malicious events in IoT-based smart cities. The experiments are implemented using a UNSW-NB 15 dataset. The proposed model achieves high accuracy rates using RFT, K-NN, and AdaBoost of approximately 98.8%. It is noted that the accuracy rate of the J48 classifier achieves 85.51%, which is lower than the others. Subsequently, the accuracy rates of AdaBoost and Bagging based on J48 are 98.9% and 91.41%, respectively. Additionally, the error rates of RFT, K-NN, and AdaBoost are very low. Similarly, the proposed model achieves high precision, recall, and F1-measure high rates using RFT, K-NN, AdaBoost, and Bagging. The second phase depends on creating an auto-adaptive model through the dynamic adaptation of the attack detection model based on reinforcement one-shot learning using a small number of instances to conserve the memory of any smart device in an IoT network. The proposed auto-adaptive model may reduce false rates of reporting by the intrusion detection system (IDS). It can detect any change in the behaviors of smart devices quickly and easily. The IADM can improve the performance rates for IDS by maintaining the memory consumption, time consumption, and speed of the detection process.

SELECTION OF CITATIONS
SEARCH DETAIL
...