Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 22(8): 1889-1899, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37193818

ABSTRACT

The exposure to UVA (320-400 nm) irradiation is a major threat to human skin concerning photoaging and carcinogenesis. It has been shown that UVA irradiation can induce reactive oxygen species (ROS) and DNA mutations, such as 8-hydroxydeoxyguanosine. Furthermore, UVA induces the expression of photoaging-associated matrix metalloproteases (MMPs), especially of matrix metalloprotease 1 (MMP 1) and matrix metalloprotease 3 (MMP 3). In addition to this, it was recently shown that UVA-induced ROS also increase glucose metabolism of melanoma cells, however, the influence of UVA on the glucose metabolism of non-malignant cells of the human skin has, so far, not been investigated in detail. Here, we investigated the UVA-induced changes in glucose metabolism and the functional relevance of these changes in primary fibroblasts-normal non-malignant cells of the skin. These cells showed an UVA-induced enhanced glucose consumption and lactate production and changes in pyruvate production. As it has been proposed that pyruvate could have antioxidant properties we tested the functional relevance of pyruvate as protective agent against UVA-induced ROS. Our initial experiments support earlier publications, demonstrating that pyruvate treated with H2O2 is non-enzymatically transformed to acetate. Furthermore, we show that this decarboxylation of pyruvate to acetate also occurs upon UVA irradiation. In addition to this, we could show that in fibroblasts pyruvate has antioxidant properties as enhanced levels of pyruvate protect cells from UVA-induced ROS and partially from a DNA mutation by the modified base 8-hydroxydeoxyguanosine. Furthermore, we describe for the first time, that the interaction of UVA with pyruvate is relevant for the regulation of photoaging-associated MMP 1 and MMP 3 expression.


Subject(s)
Antioxidants , Skin Aging , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism , Reactive Oxygen Species/metabolism , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Hydrogen Peroxide/metabolism , Skin/radiation effects , Glucose , Pyruvates/pharmacology , Pyruvates/metabolism , Ultraviolet Rays , Fibroblasts/metabolism , Cells, Cultured
2.
Photochem Photobiol Sci ; 21(3): 361-372, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35174452

ABSTRACT

The damaging effects of solar ultraviolet (UV) radiation exposure to human skin are well known and can reach from accelerated skin aging (photoaging) to skin cancer. Much of the damaging effects of solar UVA (320-400 nm) radiation is associated with the induction of reactive oxygen species (ROS), which are capable to cause oxidative damage to DNA like the oxidized guanosine 8-hydroxy-2' -deoxyguanosine (8-OHdG). Therefore, new UV protective strategies, have to be tested for their efficiency to shield against UV induced damage. We investigated the protective effects of HelioVital sun protection filter foil against UVA1 irradiation in skin cells. It could be shown, that HelioVital sun protection filter foil has protective effects against UVA1 irradiation induced changes in matrix metalloproteinase (MMP) expression. Furthermore a UVA1-dependant regulation of MMP15 in human fibroblasts could be shown for the first time in this context. In addition, this study demonstrated the protective effect of the HelioVital filter film against UVA1-induced ROS production and DNA damage. These results could pave the way for clinical studies with HelioVital filter foil shielding against the damaging effects of phototherapy and other forms of irradiation therapy, thereby increasing the safety and treatment opportunities of these forms of therapy.


Subject(s)
DNA Damage , Matrix Metalloproteinases , Radiation Protection , Skin , DNA/metabolism , Humans , Matrix Metalloproteinases/metabolism , Protective Clothing , Skin/enzymology , Skin/radiation effects , Ultraviolet Rays
3.
Am J Transplant ; 12(1): 218-25, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21943390

ABSTRACT

Azathioprine is associated with enhanced skin photosensitivity to ultraviolet A (UVA) and leads to incorporation of 6-thioguanine (6-TG) into DNA of dividing cells. Unlike canonical DNA, 6-TG DNA is damaged by UVA, which comprises more than 90% of the ultraviolet reaching earth. Skin photosensitivity to UVA and UVB was measured in 48 kidney transplant patients immunosuppressed either by azathioprine (n = 32) or mycophenolate (n = 16). In 23 patients, azathioprine was subsequently replaced by mycophenolate and skin photosensitivity, DNA 6-TG content in peripheral blood mononuclear cells, and susceptibility to UVA-induced DNA damage were monitored for up to 2 years. The mean minimal erythema dose to UVA on azathioprine was twofold lower than on mycophenolate. Three months after replacing azathioprine by mycophenolate mofetil, the minimal erythema dose to UVA had increased from 15 to 25 J/cm(2) (p < 0.001) accompanied by reduced DNA 6-TG content. P53 protein expression in irradiated skin indicated reduced susceptibility to UVA-induced DNA damage. 6-TG DNA in peripheral blood mononuclear cells remained measurable for over 2 years. Replacing azathioprine selectively reduced the skin photosensitivity to UVA, attenuated UVA-induced skin DNA damage, and is likely based on incorporated 6-TG in DNA.


Subject(s)
Azathioprine/administration & dosage , DNA Damage , Immunosuppressive Agents/administration & dosage , Kidney Transplantation , Photosensitizing Agents/administration & dosage , Skin/radiation effects , Ultraviolet Rays , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...