Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 28(8): 1168-1182, 2022 08.
Article in English | MEDLINE | ID: mdl-35510663

ABSTRACT

BACKGROUND: Toll-like receptor (TLR) agonist polyinosinic-polycytidylic acid (poly I:C) exerts neuroprotective effects against cerebral ischemia (CI), but concrete evidence supporting its exact mechanism of action is unclear. METHODS: We evaluated the neuroprotective role of poly I:C by assessing CI indicators such as brain infarct volume (BIV), neurological deficit score (N.S.), and signaling pathway proteins. Moreover, we performed a narrative review to illustrate the mechanism of action of TLRs and their role in CI. Our search identified 164 articles and 10 met the inclusion criterion. RESULTS: Poly I:C reduces BIV and N.S. (p = 0.00 and p = 0.03). Interestingly, both pre- and post-conditioning decrease BIV (preC p = 0.04 and postC p = 0.00) and N.S. (preC p = 0.03 and postC p = 0.00). Furthermore, poly I:C upregulates TLR3 [SMD = 0.64; CIs (0.56, 0.72); p = 0.00], downregulates nuclear factor-κB (NF-κB) [SMD = -1.78; CIs (-2.67, -0.88); p = 0.0)], and tumor necrosis factor alpha (TNF-α) [SMD = -16.83; CIs (-22.63, -11.02); p = 0.00]. CONCLUSION: We showed that poly I:C is neuroprotective and acts via the TLR3/NF-κB/TNF-α pathway. Our review indicated that suppressing TLR 2/4 may illicit neuroprotection against CI. Further research on simultaneous activation of TLR3 with poly I:C and suppression of TLR 2/4 might open new vistas for the development of therapeutics against CI.


Subject(s)
Brain Injuries , Brain Ischemia , Neuroprotective Agents , Animals , Brain Infarction , Brain Ischemia/pathology , Cerebral Infarction , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Poly I-C/pharmacology , Signal Transduction , Toll-Like Receptor 2 , Toll-Like Receptor 3/metabolism , Tumor Necrosis Factor-alpha
2.
Front Pharmacol ; 12: 714974, 2021.
Article in English | MEDLINE | ID: mdl-34603028

ABSTRACT

Background: The driving force behind osteoarthritis (OA) pathogenesis is an anabolic-catabolic (a/c) imbalance. Melatonin (MT) is a key player in maintaining a/c stability and mitigates OA pathogenesis, but mechanisms underlying its effects remain poorly understood. Objectives: We performed a systematic review analyzing the experimental data that support the clinical applicability of MT in the treatment of OA pathogenesis, placing particular emphasis on the regulation of circadian rhythms and a/c balance. Methods: Major electronic databases and grey literature were used to identify related original articles. Methodological quality of all selected studies was evaluated using the SYRCLE risk of bias tool. Pooled mean differences (MDs)/standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to estimate the effect size. Results: Eleven trials were included in this systematic review. Compared with the control group, MT significantly decreased the levels of interleukin-1ß (IL-1ß; SMD = -5.45; 95% CI [-6.78, -4.12]; p < 0.00001, and histological grading scale (SMD = -3.46; 95% CI, [-5.24, -1.68]; p < 0.0001). MT significantly increased the transforming growth factor-ß1 (TGF-ß1; SMD = 1.17; 95% CI [0.31, 2.03]; p < 0.0007). Furthermore, core circadian clock genes Per2 and Cry1 mRNA levels were regulated by MT treatment in OA progression. Conclusion: MT may maintain a/c balance and regulate circadian rhythms during OA development. MT could be used in as adjunct with other interventions to manage pain and OA severity.

3.
Am J Physiol Regul Integr Comp Physiol ; 302(4): R409-16, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22116513

ABSTRACT

Vascular leakage in multiple organs is a characteristic pathological change in sepsis. Our recent study revealed that ascorbate protects endothelial barrier function in microvascular endothelial cell monolayers through inhibiting serine/threonine protein phosphatase 2A (PP2A) activation (Han M, Pendem S, Teh SL, Sukumaran DK, Wu F, Wilson JX. Free Radic Biol Med 48: 128-135, 2010). The present study addressed the mechanism of protection by ascorbate against vascular leakage in cecal ligation and puncture (CLP)-induced septic peritonitis in mice. CLP caused NADPH oxidase activation and endothelial nitric oxide synthase (eNOS) uncoupling to produce superoxide, increased NO production by inducible NOS (iNOS) and neuronal NOS (nNOS) activity, and elevated 3-nitrotyrosine (a product of peroxynitrite) formation and PP2A activity in the hindlimb skeletal muscles at 12 h after CLP. The increase in PP2A activity was associated with decreased levels of phosphorylated serine and threonine in occludin, which was immunoprecipitated from freshly harvested endothelial cells of the septic skeletal muscles. Moreover, CLP increased the vascular permeability to fluorescent dextran and Evans blue dye in skeletal muscles. An intravenous bolus injection of ascorbate (200 mg/kg body wt), given 30 min prior to CLP, prevented eNOS uncoupling, attenuated the increases in iNOS and nNOS activity, decreased 3-nitrotyrosine formation and PP2A activity, preserved the phosphorylation state of occludin, and completely inhibited the vascular leakage of dextran and Evans blue. A delayed ascorbate injection, given 3 h after CLP, also prevented the vascular permeability increase. We conclude that ascorbate injection protects against vascular leakage in sepsis by sequentially inhibiting excessive production of NO and superoxide, formation of peroxynitrite, PP2A activation, and occludin dephosphorylation. Our study provides a scientific basis for injection of ascorbate as an adjunct treatment for vascular leakage in sepsis.


Subject(s)
Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Capillary Permeability/drug effects , Peritonitis/drug therapy , Sepsis/drug therapy , Animals , Antioxidants/administration & dosage , Ascorbic Acid/administration & dosage , Capillary Permeability/physiology , Cecum/injuries , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , NADPH Oxidases/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Occludin , Peritonitis/metabolism , Protein Phosphatase 2/metabolism , Sepsis/metabolism , Superoxides/metabolism , Tyrosine/analogs & derivatives , Tyrosine/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...