Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chem Biol Interact ; 236: 74-81, 2015 Jul 05.
Article in English | MEDLINE | ID: mdl-25964212

ABSTRACT

UNLABELLED: Nanomaterials represent a burgeoning field of technological innovation. With the onset of environmental release and commercial product exposure associated with nanomaterial manufacture and proliferation, the concomitant effects on human health remain unknown and demand further investigation. Agglomeration of nanomaterials in biologically relevant media used in in vitro methods further complicates dosing in toxicological study. OBJECTIVE: to compare the effects of in vitro dispersion techniques on the physicochemical and toxicological dosimetry of TiO2 (<50 nm) and NiO (<20 nm) nanoparticles and some resulting toxicological endpoints to test for potential effects. METHODS: three media were prepared for A549 and 16hbe14o cells with varying concentrations of TiO2 and NiO nanoparticles. Physicochemical effects were analyzed with dynamic light scattering, ICP-MS, SEM, and TEM. Toxicological effects were determined after stimulation of cells with nanoparticles for 4 and 24h followed by analysis of inflammatory and oxidative stress markers with ELISA and RT-PCR. Our data show that dispersion media differentially affect physicochemical properties and toxicological endpoints. Therefore, we conclude that in vitro nanotoxicology models that use re-suspension methods of exposure yield inconsistent and misleading biological results due to physicochemical variation of particle characteristics and transport processes.


Subject(s)
Metal Nanoparticles/toxicity , Nickel/chemistry , Nickel/toxicity , Titanium/chemistry , Titanium/toxicity , Toxicity Tests/methods , Cell Line/drug effects , Enzyme-Linked Immunosorbent Assay , Heme Oxygenase-1/genetics , Humans , Light , Mass Spectrometry/methods , Metal Nanoparticles/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Scattering, Radiation
2.
Environ Sci Technol ; 46(17): 9437-46, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22849588

ABSTRACT

2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C(5)H(12)O(6)S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM(2.5)) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM(2.5) collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Atmosphere/chemistry , Pentanols/chemistry , Sulfuric Acid Esters/chemistry , Volatile Organic Compounds/chemistry , Hydroxyl Radical/chemistry , Nitric Oxide/chemistry , Oxidants, Photochemical/chemistry , Oxidation-Reduction , Pinus/chemistry
3.
J Air Waste Manag Assoc ; 59(10): 1239-46, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19842331

ABSTRACT

Among various mitigation technologies for ammonia (NH3) emission control at animal feeding operations (AFOs), room ozonation technology is the most controversial. This paper aims to present full perspectives of ozonation techniques through a literature review and a series of laboratory experiments. In the literature review, ozone chemistry was summarized to address (1) ozone and NH3 reactions, (2) ozone and odor reactions, (3) ozone and particulate matter reactions, and (4) ozone and microorganism reactions. A series of laboratory experiments were conducted in a dual large outdoor aerosol smog chamber (270 m3). NH3 and fine particle number concentrations from ozone-treated and control experiments were compared. The experimental results indicated that (1) ozone has no significant effect on NH3 emissions/concentrations or NH3 decay of an outdoor chamber; and (2) with ozone treatment, high concentration of particles in the "high-risk" respiratory fraction (in submicron range) are generated.


Subject(s)
Air Pollutants/chemistry , Air Pollution/prevention & control , Ammonia/chemistry , Animal Husbandry/methods , Ozone/chemistry , Animals , Animals, Domestic , Particulate Matter/chemistry , Time Factors
4.
Anal Chem ; 77(10): 3156-63, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15889904

ABSTRACT

An on-line technique has been demonstrated for the analysis of photochemical oxidation reaction products. The technique is based on the direct introduction of gas and particulate oxidation products into a custom-built atmospheric sampling glow discharge ionization source (ASGDI) coupled to a quadrupole ion trap mass spectrometer (QITMS). Operational parameters of the ASGDI system were investigated to determine their influence on the ion signal for the analysis of oxidation products in real time. These parameters include the discharge current, ion accumulation time, and type of reagent gas. Reference mass spectra from standards were generated for a variety of biogenic compounds and terpene reaction products containing keto, hydroxy, aldehyde, carboxylic acid, or epoxy groups to better understand the fragmentation that occurs in the glow discharge ion source. Results are presented for ozonolysis reactions of four biogenic monoterpenes (alpha-pinene, beta-pinene, D-limonene, Delta(3)-carene) monitored with the ASGDI quadrupole ion trap to demonstrate the ability to obtain real-time measurements. The reaction products identified with ASGDI-QITMS correspond to those products identified with other techniques, including on-line atmospheric pressure chemical ionization techniques. Efficient differentiation of multifunctional products including mono-/di-/hydroxy-/keto-carboxylic acid and keto-/hydroxy-aldehyde was possible by use of the MS/MS capability of the instrument.


Subject(s)
Atmosphere , Mass Spectrometry/methods , Monoterpenes/analysis , Ozone/chemistry , Bicyclic Monoterpenes , Bridged Bicyclo Compounds/analysis , Bridged Bicyclo Compounds/chemistry , Carboxylic Acids/analysis , Carboxylic Acids/chemistry , Cyclohexenes/analysis , Cyclohexenes/chemistry , Dicarboxylic Acids/analysis , Dicarboxylic Acids/chemistry , Limonene , Monoterpenes/chemistry , Oxidation-Reduction , Terpenes/analysis , Terpenes/chemistry , Time Factors
5.
Environ Sci Technol ; 39(24): 9583-94, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16475339

ABSTRACT

A semi-explicit mechanism of d-limonene was developed and tested against experimental results obtained from large outdoor Teflon film chambers at the University of North Carolina (UNC) smog chamber facility. The model couples gas-phase reactions with partitioning processes and possible particle-phase reactions. The model not only tracks the gas-phase ozonolysis reaction of d-limonene, but also provides a reasonable prediction of the secondary aerosol mass production under different conditions. Limononaldehyde was the major identified product, followed by limona-ketone, referred to here as keto-limonene, keto-limononaldehyde, limononic acid, and keto-limononic acid. Identified particle-phase products accounted for about 60% of the observed particle mass in the initial stages of the reaction. Model sensitivity was tested and discussed with respect to effects of temperature, humidity, water uptake, and reactant concentrations.


Subject(s)
Aerosols/chemistry , Air Pollutants/toxicity , Aldehydes/chemistry , Ozone/chemistry , Terpenes/chemistry , Atmosphere , Cyclohexenes , Humidity , Kinetics , Limonene , Models, Chemical , North Carolina , Spectroscopy, Fourier Transform Infrared , Temperature , Time Factors
6.
Inhal Toxicol ; 16 Suppl 1: 107-14, 2004.
Article in English | MEDLINE | ID: mdl-15204799

ABSTRACT

Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concentrations and aerosol chemistry. These chambers were used to generate photochemical and nonirradiated systems, which were interfaced with an in vitro exposure system to compare the inflammatory effects of complex air pollutant mixtures with and without sunlight-driven chemistry. These are preliminary experiments in a new project to study the health effects of particulate matter and associated gaseous copollutants. Briefly, two matched outdoor chambers capable of using real sunlight were utilized to generate two test atmospheres for simultaneous exposures to cultured lung cells. One chamber was used to produce a photochemically active system, which ran from sunrise to sunset, producing O(3) and the associated secondary products. A few hours after sunset, NO was added to titrate and remove completely the O(3), forming NO(2). In the second chamber, an equal amount of NO(2) and the same amount of the 55-component hydrocarbon mixture used to setup the photochemical system in the first side were injected. A549 cells, from an alveolar type II-like cell line grown on membranous support, were exposed to the photochemical mixture or the "original" NO(2)/hydrocarbon mixture for 5 h and analyzed for inflammatory response (IL-8 mRNA levels) 4 h postexposure. In addition, a variation of this experiment was conducted to compare the photochemical system producing O(3) and NO(2), with a simple mixture of only the O(3) and NO(2). Our data suggest that the photochemically altered mixtures that produced secondary products induced about two- to threefold more IL-8 mRNA than the mixture of NO(2) and hydrocarbons or O(3). These results indicate that secondary products generated through the photochemical reactions of NO(x) and hydrocarbons may significantly contribute to the inflammatory responses induced by exposure to urban smog. From previous experience with relevant experiments, we know that many of these gaseous organic products would contribute to the formation of significant secondary organic particle mass in the presence of seed particles (including road dust or combustion products). In the absence of such particles, these gaseous products remained mostly as gases. These experiments show that photochemically produced gaseous products do influence the toxic responses of the cells in the absence of particles.


Subject(s)
Air Pollutants/pharmacology , Epithelial Cells/immunology , Hydrocarbons/pharmacology , Lung/immunology , Nitrogen Oxides/pharmacology , Smog , Air Pollutants/chemistry , Atmosphere Exposure Chambers , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/pathology , Inflammation , Interleukin-8/analysis , Interleukin-8/biosynthesis , Lung/drug effects , Lung/pathology , Ozone/chemistry , Photochemistry , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sunlight , Temperature , Urban Health
7.
Environ Sci Technol ; 38(5): 1428-34, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15046344

ABSTRACT

The formation of oligomeric molecules, an important step in secondary organic aerosol production, is reported. Aerosols were produced by the reaction of alpha-pinene and ozone in the presence of acid seed aerosol and characterized by exact mass measurements and tandem mass spectrometry. Oligomeric products between 200 and 900 u were detected with both electrospray ionization and matrix-assisted laser desorption ionization. The exact masses and dissociation products of these ions were consistent with various combinations of the known primary products of this reaction ("monomers") with and/or without the expected acid-catalyzed decomposition products of the monomers. Oligomers as large as tetramers were detected. Both aldol condensations and gem-diol reactions are suggested as possible pathways for oligomer formation. Exact mass measurements also revealed reaction products that cannot be explained by simple oligomerization of monomers and monomer decomposition products, suggesting the existence of complex reaction channels. Chemical reactions leading to oligomer formation provide a reasonable answer to a difficult problem associated with secondary organic aerosol production in the atmosphere. It is unlikely that monomers alone play an important role in the formation and growth of nuclei in the atmosphere as their Kelvin vapor pressures are too high for them to significantly partition into the particle phase. Polymerization provides a mechanism by which partitioning to the particle phase becomes favored.


Subject(s)
Aerosols/chemistry , Air Pollutants/analysis , Polymers/analysis , Environmental Monitoring , Organic Chemicals , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Volatilization
8.
Environ Sci Technol ; 37(18): 4113-21, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-14524443

ABSTRACT

The partitioning behavior of a set of diverse SOCs on two and three component mixtures of aerosols from different sources was studied using smog chamber experimental data. A set of SOCs of different compound types was introduced into a system containing a mixture of aerosols from two or more sources. Gas and particle samples were taken using a filter-filter-denuder sampling system, and a partitioning coefficient Kp was estimated using Kp = Cp/(CgTSP). Particle size distributions were measured using a differential mobility analyzer and a light scattering detector. Gas and particle samples were analyzed using GCMS. The aerosol composition in the chamber was tracked chemically using a combination of signature compounds and the organic matter mass fraction (f(om)) of the individual aerosol sources. The physical nature of the aerosol mixture in the chamber was determined using particle size distributions, and an aggregate Kp was estimated from theoretically calculated Kp on the individual sources. Model fits for Kp showed that when the mixture involved primary sources of aerosol, the aggregate Kp of the mixture could be successfully modeled as an external mixture of the Kp on the individual aerosols. There were significant differences observed for some SOCs between modeling the system as an external and as an internal mixture. However, when one of the aerosol sources was secondary, the aggregate model Kp required incorporation of the secondary aerosol products on the preexisting aerosol for adequate model fits. Modeling such a system as an external mixture grossly overpredicted the Kp of alkanes in the mixture. Indirect evidence of heterogeneous, acid-catalyzed reactions in the particle phase was also seen, leading to a significant increase in the polarity of the resulting aerosol mix and a resulting decrease in the observed Kp of alkanes in the chamber. The model was partly consistent with this decrease but could not completely explain the reduction in Kp because of insufficient knowledge of the secondary organic aerosol composition.


Subject(s)
Air Pollutants/analysis , Smog , Aerosols , Chemical Phenomena , Chemistry, Physical , Gases , Organic Chemicals , Particle Size , Volatilization
9.
Environ Sci Technol ; 37(17): 3828-37, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-12967102

ABSTRACT

Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone, and octanal were studied. The carbonyls were selected based on their reactivity for acid-catalyzed reactions, their proton affinity, and their similarity to the ring-opening products from the atmospheric oxidation of aromatics. To facilitate acid-catalyzed heterogeneous hemiacetal/acetal formation, glycerol was injected along with inorganic seed aerosols into the flow reactor system. Carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. Aldehydes were more reactive than ketones for acid-catalyzed reactions. The conjugated functionality also resulted in higher organic aerosol yieldsthan saturated aliphatic carbonyls because conjugation with the olefinic bond increases the basicity of the carbonyl leading to increased stability of the protonated carbonyl. Aerosol population was measured from a series of sampling ports along the length of the flow reactor using a scanning mobility particle sizer. Fourier transform infrared spectrometry of either an impacted liquid aerosol layer or direct reaction of carbonyls as a thin liquid layer on a zinc selenide FTIR disk was employed to demonstrate the direct transformation of chemical functional groups via the acid-catalyzed reactions. These results strongly indicate that atmospheric multifunctional organic carbonyls, which are created by atmospheric photooxidation reactions, can contribute significantly to secondary organic aerosol formation through acid-catalyzed heterogeneous reactions. Exploratory studies in 25- and 190-m3 outdoor chambers were also implemented to demonstrate the formation of high molecular weight organic structures. The reaction of ozone with alpha-pinene to generate secondary organic aerosols (SOAs) was performed in the presence of background aerosol consisting of a mixture of wood soot and diesel soot. Results strongly suggest that indigenous sulfuric acid associated with the combustion of fossil fuels (e.g., diesel soot) can initiate acid-catalyzed heterogeneous reactions of SOAs on the particle phase.


Subject(s)
Aerosols , Air Pollutants/analysis , Carbon Compounds, Inorganic/chemistry , Catalysis , Fossil Fuels , Hydrogen-Ion Concentration , Incineration , Particle Size , Photochemistry , Spectroscopy, Fourier Transform Infrared , Sulfuric Acids/chemistry
10.
Science ; 298(5594): 814-7, 2002 Oct 25.
Article in English | MEDLINE | ID: mdl-12399587

ABSTRACT

According to evidence from our laboratory, acidic surfaces on atmospheric aerosols lead to potentially multifold increases in secondary organic aerosol (SOA) mass. Experimental observations using a multichannel flow reactor, Teflon (polytetrafluoroethylene) film bag batch reactors, and outdoor Teflon-film smog chambers strongly confirm that inorganic acids, such as sulfuric acid, catalyze particle-phase heterogeneous reactions of atmospheric organic carbonyl species. The net result is a large increase in SOA mass and stabilized organic layers as particles age. If acid-catalyzed heterogeneous reactions of SOA products are included in current models, the predicted SOA formation will be much greater and could have a much larger impact on climate forcing effects than we now predict.

SELECTION OF CITATIONS
SEARCH DETAIL
...