Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroendocrinol ; 30(9): e12613, 2018 09.
Article in English | MEDLINE | ID: mdl-29862587

ABSTRACT

Prolactin (PRL) is a peptide hormone that performs over 300 biological functions, including those that require binding to prolactin receptor (PRL-R) in neurones within the central nervous system (CNS). To enter the CNS, circulating PRL must overcome the blood-brain barrier. Accordingly, areas of the brain that do not possess a blood-brain barrier, such as the subfornical organ (SFO), are optimally positioned to interact with systemic PRL. The SFO has been classically implicated in energy and fluid homeostasis but has the potential to influence oestrous cyclicity and gonadotrophin release, which are also functions of PRL. We aimed to confirm and characterise the expression of PRL-R in the SFO, as well as identify the effects of PRL application on membrane excitability of dissociated SFO neurones. Using a quantitative real-time polymerase chain reaction, we found that PRL-R mRNA in the SFO of male and female Sprague Dawley rats did not significantly differ between juvenile and sexually mature rats (P = .34), male and female rats (P = .97) or across the oestrous cycle (P = .54). Patch-clamp recordings were obtained in juvenile male rats to further investigate the actions of PRL at the SFO. Dissociated SFO neurones perfused with 1 µmol L-1 PRL resulted in 2 responsive subpopulations of neurones; 40% depolarised (n = 15/43, 11.3 ± 1.7 mV) and 14% hyperpolarised (n = 6/43, -6.7 ± 1.4 mV) to PRL application. Within the range of 10 pmol L-1 to 1 µmol L-1 , the concentrations of PRL were not significantly different in either the magnitude (P = .53) or proportion (P = .19) of response. Furthermore, PRL application significantly reduced the transient K+ current in 67% of SFO neurones in voltage-clamp configuration (n = 6/9, P = .02). The stability in response to PRL and expression of PRL-R in the SFO suggests that PRL function is conserved across physiological states and circulating PRL concentrations, prompting further investigations aiming to clarify the nature of PRL function in the SFO.


Subject(s)
Action Potentials/drug effects , Neurons/drug effects , Prolactin/pharmacology , Receptors, Prolactin/metabolism , Subfornical Organ/drug effects , Animals , Estrous Cycle/genetics , Estrous Cycle/metabolism , Female , Male , Neurons/metabolism , Neurons/physiology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptors, Prolactin/genetics , Subfornical Organ/metabolism , Subfornical Organ/physiology
2.
Oncogene ; 35(43): 5608-5618, 2016 10 27.
Article in English | MEDLINE | ID: mdl-26804176

ABSTRACT

We report that Mucin1 (MUC1), a transmembrane glycoprotein that is overexpressed in >80% of pancreatic ductal adenocarcinoma (PDA), induced a pro-angiogenic tumor microenvironment by increasing the levels of neuropilin-1 (NRP1, a co-receptor of vascular endothelial growth factor (VEGF)) and its ligand VEGF. Expression of tumor-associated MUC1 (tMUC1) positively correlated with NRP1 levels in human and mouse PDA. Further, tMUC1hi PDA cells secreted high levels of VEGF and expressed high levels of VEGF receptor 2 (VEGFR2) and its phosphorylated forms as compared with tMUC1low/null PDA. This enabled the tMUC1hi/NRP1hi PDA cells to (a) induce endothelial cell tube formation, (b) generate long ectopic blood vessels and (c) enhance distant metastasis in a zebrafish xenograft model. Concurrently, the proteins associated with epithelial-to-mesenchymal transition, N-cadherin and Vimentin, were highly induced in these tMUC1/NRP1hi PDA cells. Hence, blocking signaling via the NRP1-VEGF axis significantly reduced tube formation, new vessel generation and metastasis induced by tMUC1hi PDA cells. Finally, we show that blocking the interaction between VEGF165 and NRP1 with a NRP1 antagonist significantly reduced VEGFR signaling and PDA tumor growth in vivo. Taken together, our data suggest a novel molecular mechanism by which tMUC1 may modulate NRP1-dependent VEGFR signaling in PDA cells.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Mucin-1/metabolism , Neuropilin-1/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Disease Models, Animal , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Gene Expression , Heterografts , Humans , Mice , Mice, Knockout , Mucin-1/genetics , Neoplasm Metastasis , Neovascularization, Pathologic/metabolism , Neuropilin-1/genetics , Pancreatic Neoplasms/genetics , Receptors, Vascular Endothelial Growth Factor/genetics , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...