Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 173: 112300, 2020 May.
Article in English | MEDLINE | ID: mdl-32087435

ABSTRACT

Although dehydrins show cryoprotective activities for freeze-sensitive enzymes, the underlying mechanism is still under investigation. Here, we report that F-segments conserved in some dehydrins cryoprotected lactate dehydrogenase (LDH) as well as K-segments, which were previously identified as cryoprotective segments of dehydrins. The cryoprotective activity levels of four F-segments of Arabidopsis dehydrins were similar to that of a typical K-segment. Amino acid substitution experiments indicated that the activity of the F-segment of Arabidopsis COR47 (designated as Fseg) depended on the hydrophobic residues (L, F, and V). Intriguingly, when all the amino acids other than the hydrophobic residues were changed to glycine, the cryoprotective activity did not change, suggesting that the hydrophobic amino acids were sufficient for Fseg activity. Circular dichroism analysis indicated that Fseg was mainly disordered in aqueous solution as well as Fseg_Φ/T, in which the hydrophobic residues of Fseg were changed to T. This suggested that the hydrophobic interaction might be related to the cryoprotective activities of Fseg.


Subject(s)
Arabidopsis , Amino Acid Sequence , Hydrophobic and Hydrophilic Interactions , L-Lactate Dehydrogenase , Plant Proteins
2.
J Plant Physiol ; 210: 18-23, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28040625

ABSTRACT

Dehydrins, which are group 2 late embryogenesis abundant (LEA) proteins, accumulate in plants during the development of the embryo and exposure to abiotic stresses including low temperature. Dehydrins exhibit cryoprotection of freezing-sensitive enzymes, e.g. lactate dehydrogenase (LDH). Although it has been reported that K-segments conserved in dehydrins are related to their cryoprotection activity, it has not been determined which sequence features of the K-segments contribute to the cryoprotection. A cryoprotection assay using LDH indicated that 13 K-segments including 12 K-segments found in Arabidopsis dehydrins and a typical K-segment (TypK, EKKGIMEKIKEKLPG) derived from the K-segments of many plants showed similar cryoprotective activities. Mutation of the TypK sequence demonstrated that hydrophobic amino acids were clearly involved in preventing the cryoinactivation, cryoaggregation, and cryodenaturation of LDH. We propose that the cryoprotective activities of dehydrins may be made possible by the hydrophobic residues of the K-segments.


Subject(s)
Amino Acids/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cryoprotective Agents/metabolism , L-Lactate Dehydrogenase/genetics , Amino Acid Sequence , Amino Acids/chemistry , Arabidopsis/chemistry , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , L-Lactate Dehydrogenase/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...