Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Water Sci Technol ; 78(7): 1448-1458, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30427784

ABSTRACT

This study investigates the ability of spatial post-discharge mode functionalized kaolin to remove textile dye Reactive Red 2 from aqueous solution compared to that of the raw kaolinite. To fulfill the aim, the removal conditions, including plasma exposure time, processed mode (direct and post-discharge), pH of the aqueous dye solution, initial dye concentration and adsorbent dosage, were investigated. The changes that occur on clay surfaces before and after gliding arc plasma treatment were followed by Fourier transform infrared spectroscopy, scanning electron microscopy and nitrogen physisorption. The point of zero charge and the changes of the textural properties after gliding arc plasma treatment were also examined. The experimental data were analyzed using pseudo-first-order, pseudo-second-order and empirical Elovich models. The diffusion phenomenon was also studied. The results obtained indicate that spatial post-discharge pre-treatment of kaolin deeply influences the functional groups of some of its minerals as well as the morphology and texture of its particles. Consequently, at room temperature (∼30 °C), the maximum adsorption capacities of natural raw kaolin clay were tripled after treatment with gliding arc plasma in spatial post-discharge mode and were almost doubled after the direct treatment mode.


Subject(s)
Kaolin/chemistry , Models, Chemical , Naphthalenesulfonates/chemistry , Triazines/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogen-Ion Concentration , Kaolin/analysis , Kinetics , Naphthalenesulfonates/analysis , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Triazines/analysis , Water Pollutants, Chemical/analysis
2.
Lett Appl Microbiol ; 48(1): 13-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19170858

ABSTRACT

AIM: To evaluate the microbial disinfection efficacy of a plasmachemical solution obtained by the activation of water with gliding electric discharges. METHODS AND RESULTS: Distilled water was activated for 5 min by a nonthermal quenched plasma of the glidarc type operating in humid air and at atmospheric pressure. The plasma-activated water (PAW) was then used to treat planktonic and adherent cells of Staphylococcus epidermidis, Leuconostoc mesenteroides (as models of Gram-positive bacteria), Hafnia alvei (a Gram-negative bacteria) and Saccharomyces cerevisiae (as a yeast model). The treatments were less efficient on adherent cells than on planktonic cells in the case of bacteria, but not of S. cerevisiae. Inactivation was more effective for bacteria than for the yeast. CONCLUSIONS: Significant reductions in microbial populations were achieved in all cases, demonstrating the effectiveness of this new approach to treat contaminated media. SIGNIFICANCE AND IMPACT OF THE STUDY: PAW is a promising solution with potential application to the decontamination of equipment and surfaces.


Subject(s)
Disinfection/methods , Microbial Viability , Water Microbiology , Colony Count, Microbial , Electricity , Hafnia alvei/growth & development , Leuconostoc/growth & development , Saccharomyces cerevisiae/growth & development , Staphylococcus epidermidis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL