Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 131(11): 3991-7, 2009 Mar 25.
Article in English | MEDLINE | ID: mdl-19260642

ABSTRACT

PNU-286607 is the first member of a promising, novel class of antibacterial agents that act by inhibiting bacterial DNA gyrase, a target of clinical significance. Importantly, PNU-286607 displays little cross-resistance with marketed antibacterial agents and is active against methicillin-resistant staphylococcus aureus (MRSA) and fluoroquinoline-resistant bacterial strains. Despite the apparent stereochemical complexity of this unique spirocyclic barbituric acid compound, the racemic core is accessible by a two-step route employing a relatively obscure rearrangement of vinyl anilines, known in the literature as the "tert-amino effect." After a full investigation of the stereochemical course of the racemic reaction, starting with the meso cis-dimethylmorpholine, a practical asymmetric variant of this process was developed.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Barbiturates/chemistry , Barbiturates/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Spiro Compounds/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Cyclization , Drug Resistance, Bacterial , Fluoroquinolones , Methicillin-Resistant Staphylococcus aureus/drug effects , Stereoisomerism , Topoisomerase II Inhibitors
2.
Antimicrob Agents Chemother ; 52(8): 2806-12, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18519725

ABSTRACT

QPT-1 was discovered in a compound library by high-throughput screening and triage for substances with whole-cell antibacterial activity. This totally synthetic compound is an unusual barbituric acid derivative whose activity resides in the (-)-enantiomer. QPT-1 had activity against a broad spectrum of pathogenic, antibiotic-resistant bacteria, was nontoxic to eukaryotic cells, and showed oral efficacy in a murine infection model, all before any medicinal chemistry optimization. Biochemical and genetic characterization showed that the QPT-1 targets the beta subunit of bacterial type II topoisomerases via a mechanism of inhibition distinct from the mechanisms of fluoroquinolones and novobiocin. Given these attributes, this compound represents a promising new class of antibacterial agents. The success of this reverse genomics effort demonstrates the utility of exploring strategies that are alternatives to target-based screens in antibacterial drug discovery.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Proteins/antagonists & inhibitors , Topoisomerase II Inhibitors , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Area Under Curve , Bacteria/enzymology , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Cell Line , Cell Proliferation/drug effects , Metabolic Clearance Rate , Mice , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Stereoisomerism
3.
Bioorg Med Chem Lett ; 17(14): 4040-3, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17561394

ABSTRACT

The discovery and initial optimization of a novel anthranilic acid derived class of antibacterial agents which suffered from extensive protein binding has been previously reported. The structure-activity relationships around the carboxylic acid substituent are described herein. This acid was replaced by several alternative functional groups in attempts to retain bioactivity while reducing protein binding. Only groups with an acidic proton retained activity, and analogs containing those groups maintained the protein binding inherent to this class of antibacterial agents.


Subject(s)
Bacteria/drug effects , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Protein Biosynthesis/drug effects , Bacteria/genetics , Microbial Sensitivity Tests , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 16(24): 6173-7, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17027262

ABSTRACT

The novel bacterial transcription/translation (TT) inhibitor 1 was identified through a combination of high throughput screening and exploratory medicinal chemistry. Initial optimization of the anthranilic acid moiety and sulfonamide amine diversity was accomplished via 1- and two-dimensional solution phase libraries, resulting in an improvement in the MIC of the lead from 64 to 8mug/mL (compound 4l). Subsequent modification of the central aromatic ring and further refinement of the sulfonamide amines required the development of a solid phase route on Wang resin. The resulting libraries generated a number of potent antibacterials with MICs of 1mug/mL (e.g., 10b, 12, and 13). During the course of this work, it became apparent that the antibacterial activity of the series is not fully correlated with TT inhibition, suggesting that at least one additional mechanism of action is operative.


Subject(s)
Anti-Bacterial Agents/pharmacology , Protein Biosynthesis/drug effects , Staphylococcus aureus/genetics , Transcription, Genetic/drug effects , Anti-Bacterial Agents/chemistry , Models, Molecular , Staphylococcus aureus/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...