Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plant Foods Hum Nutr ; 79(2): 300-307, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696134

ABSTRACT

The industrial processing of pineapples generates a substantial quantity of by-products, including shell, crown, and core. Bromelain, a proteolytic enzyme found naturally in pineapple, including its by-products, may positively influence the bioaccessibility of phenolics from milk coffee. Therefore, this study aimed to assess how the inclusion of extracts from pineapple by-products, namely shell, crown and core, could impact the bioaccessibility of coffee phenolics when combined with milk. After measuring the proteolytic activity of pineapple by-products, the standardized in vitro digestion model of INFOGEST was employed to evaluate changes in total phenolic content, total antioxidant capacity, and individual phenolic compounds in different coffee formulations. The results showed that incorporating extracts from the crown or core in both black and milk coffee increased the bioaccessibility of total phenolics (from 93 to 114% to 105-129%) and antioxidants (from 54 to 56% to 84-87%), while this effect was not observed for the shell. Moreover, adding core extracts also enhanced the bioaccessibility of caffeoylquinic acids and gallic acid in milk coffee (from 0.72 to 0.85% and 109-155%, respectively). Overall, the findings of this study highlight that bromelain from pineapple core may have a favorable effect on the recovery of phenolic compounds in milk coffee, possibly due to its ability to cleave proteins. These outcomes point out that industrial by-products can be transformed into economic value by being reintroduced into the production process through suitable treatment instead of disposal.


Subject(s)
Ananas , Antioxidants , Coffee , Milk , Phenols , Ananas/chemistry , Phenols/analysis , Antioxidants/analysis , Coffee/chemistry , Milk/chemistry , Bromelains , Animals , Gallic Acid/analysis , Digestion , Biological Availability , Plant Extracts/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/analysis , Food Handling/methods
2.
Foods ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254540

ABSTRACT

Butternut squash (Cucurbita moschata) is recognized as a functional food due to its abundant content of health-promoting compounds, including carotenoids and polyphenols. The aim of this study was to examine the impact of industrial freezing stages on the bioaccessibility of carotenoids and polyphenols in organic Butternut squash supplied for baby food. Identification and quantification of bioactive compounds were carried out using UPLC-ESI-MS/MS and HPLC-PDA, respectively. The results revealed that industrial freezing of squash did not cause a significant change in bioaccessibility of α- and ß-carotene. On the other hand, frozen squash was found to contain higher levels of bioaccessible epicatechin (main flavonoid) (117.5 mg/kg) and syringic acid (main phenolic acid) (32.0 mg/kg) compared to fresh internal fruit. Moreover, the levels of bioaccessible epicatechin and syringic acid were found to be the highest in discarded pomace and seed sample (454.0 and 132.4 mg/kg, respectively). Overall, this study emphasized that industrial freezing could be an effective strategy for preserving carotenoid bioaccessibility in organic Butternut squash, while also enhancing the levels of bioaccessible polyphenols. In addition, we also demonstrated that pomace and seed, which are discarded as waste, have significant potential to be utilized as a food source rich in bioactive compounds.

3.
J Sci Food Agric ; 104(4): 2165-2173, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37926555

ABSTRACT

BACKGROUND: Citrus peels, which are often discarded as waste in the food-processing industry, are rich sources of polyphenols. The aim of the current study was to investigate the influence of an industrial freezing process along with blanching and cutting pretreatments on the in vitro gastrointestinal digestion stability of orange (Citrus sinensis L.) and lemon (Citrus limon L.) peel polyphenols. The major polyphenols were identified and quantified with ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) and high performance liquid chromatography-photodiode array detector (HPLC-PDA), respectively. RESULTS: The results revealed that hesperidin and chlorogenic acid were the predominant flavonoid and phenolic acids in orange peels whereas, for lemon peels, eriocitrin and caffeic acid were the dominant flavonoid and phenolic acids, respectively. Blanching pretreatment enhanced the levels of major flavonoids in orange and lemon peels (by 39-82% and 54-146%, respectively) (P < 0.05) after in vitro gastrointestinal digestion. On the other hand, the application of cutting treatment after blanching significantly reduced the levels of flavonoids (23-62%) (P < 0.05); however, there was no statistically significant difference between the phenolic acid levels of cut and uncut citrus peels. Overall, the bioaccessibility of individual flavonoids and phenolic acids from frozen orange peels was generally slightly lower than that of untreated peels (9-34% and 9-49%, respectively). Nevertheless, frozen lemon peels contained higher bioaccessible flavonoids and phenolic acids in comparison with untreated peels (40-172% and 32-98%, respectively). CONCLUSION: These results suggest that industrial freezing steps could largely preserve the bioaccessibility of polyphenols in orange and lemon peels. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Citrus sinensis , Citrus , Polyphenols , Citrus/chemistry , Tandem Mass Spectrometry , Freezing , Flavonoids/analysis , Digestion
4.
Food Chem ; 409: 135303, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36586255

ABSTRACT

Food Traceability 4.0 refers to the application of fourth industrial revolution (or Industry 4.0) technologies to ensure food authenticity, safety, and high food quality. Growing interest in food traceability has led to the development of a wide range of chemical, biomolecular, isotopic, chromatographic, and spectroscopic methods with varied performance and success rates. This review will give an update on the application of Traceability 4.0 in the fruits and vegetables sector, focusing on relevant Industry 4.0 enablers, especially Artificial Intelligence, the Internet of Things, blockchain, and Big Data. The results show that the Traceability 4.0 has significant potential to improve quality and safety of many fruits and vegetables, enhance transparency, reduce the costs of food recalls, and decrease waste and loss. However, due to their high implementation costs and lack of adaptability to industrial environments, most of these advanced technologies have not yet gone beyond the laboratory scale. Therefore, further research is anticipated to overcome current limitations for large-scale applications.


Subject(s)
Fruit , Vegetables , Artificial Intelligence , Food Safety , Industry
5.
Biomed Pharmacother ; 154: 113555, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36027610

ABSTRACT

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.


Subject(s)
Emodin , Polygonaceae , Anti-Inflammatory Agents , Antioxidants , Emodin/pharmacology , Emodin/therapeutic use , Humans , Medicine, Chinese Traditional
6.
Prog Biomater ; 11(4): 321-329, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35904711

ABSTRACT

Medicinal applications of turmeric-derived curcumin have been known to mankind for long ages. Its potential in managing "cystic fibrosis" has also been evaluated. This autosomal recessive genetic disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which involves an impaired secretion of chloride ions and leads to hypersecretion of thick and sticky mucus and serious complications including airway obstruction, chronic lung infection, and inflammatory reactions. This narrative review aims to highlight the available evidence for the efficacy of curcumin nanoformulations in its potential treatment of cystic fibrosis. Recent research has shown that curcumin acts on the localized mutant CFTR ion channel at the plasma membrane. Preclinical studies have also shown that curcumin nanoformulations have promising effects in the treatment of cystic fibrosis. In this context, the purpose of this narrative review is to highlight the general bioactivity of curcumin, the types of formulations and related studies, thus opening new therapeutic perspectives for CF.

7.
J Sci Food Agric ; 102(12): 5368-5377, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35318669

ABSTRACT

BACKGROUND: The potential health-promoting effects of polyphenols depend considerably on their bioaccessibility, which is affected by the presence of other nutrients in the diet, including lipids. In this study, several salad dressing formulations were prepared using industrial broccoli by-product powder (BBP), lemon juice (LJ), and three different sources of oils (olive oil, hazelnut oil and sunflower oil) to both valorize polyphenol-rich industrial discards and also to investigate polyphenol bioaccessibility. The changes in the bioaccessibility of polyphenols from BBP and LJ were determined using the standardized in vitro digestion model. RESULTS: Four groups of polyphenols (hydroxycinnamic acids, flavonols, flavones, and flavonones) were detected in BBP and LJ. The bioaccessibility of hydroxycinnamic acids and flavonols from BBP increased significantly in the presence of LJ and oils (0.3- to 5.8-fold), whereas there was no significant difference between formulations containing different oil types. On the other hand, the bioaccessibility of phenolic acids from LJ did not change notably after co-ingestion with BBP and oils, whereas flavonoids, including vicenin-2 and hesperidin, were found to be significantly more bioaccessible when LJ was co-ingested with BBP and oils (0.8- to 1.4-fold) (P < 0.05). CONCLUSION: Overall, the current study highlighted that the bioaccessibility of polyphenols from BBP and LJ was modulated in the presence of an oil matrix. © 2022 Society of Chemical Industry.


Subject(s)
Brassica , Polyphenols , Condiments , Coumaric Acids , Digestion , Flavonols , Olive Oil , Polyphenols/analysis
8.
J Agric Food Chem ; 70(23): 6864-6883, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35040324

ABSTRACT

The current increased industrial food production has led to a significant rise in the amount of food waste generated. These food wastes, especially fruit and vegetable byproducts, are good sources of natural pigments, such as anthocyanins, betalains, carotenoids, and chlorophylls, with both coloring and health-related properties. Therefore, recovery of natural pigments from food wastes is important for both economic and environmental reasons. Conventional methods that are used to extract natural pigments from food wastes are time-consuming, expensive, and unsustainable. In addition, natural pigments are sensitive to high temperatures and prolonged processing times that are applied during conventional treatments. In this sense, the present review provides an elucidation of the latest research on the extraction of pigments from the agri-food industry and how their consumption may improve human health.


Subject(s)
Food Coloring Agents , Refuse Disposal , Anthocyanins , Betalains , Humans , Vegetables
9.
Food Chem ; 374: 131728, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34891090

ABSTRACT

In this study, terebinth coffee formulations were prepared with whole or skimmed milk with or without sugar/sweetener in order to study the matrix effect on the bioaccessibility of terebinth polyphenols. Quercetin glycosides and catechin were the major flavonoids identified in the terebinth formulations, whereas gallic, protocatechuic, syringic and ellagic acids were determined as the non-flavonoid compounds. The in vitro gastrointestinal digestion model results revealed that addition of whole milk to terebinth coffee increased the total bioaccessible flavonoids significantly (45%) (p < 0.05), whereas skim milk addition did not result in any significant change. Furthermore, antioxidant capacity results measured with CUPRAC assay showed that addition of milk alone or together with sugar/sweetener increases the bioaccessibility of terebinth coffee antioxidants (36-70%) (p < 0.05). Overall, terebinth coffee + whole milk + sugar formulation was found to contain the highest amount of bioaccessible flavonoid and non-flavonoid compounds (42.71-47.07 mg/100 g).


Subject(s)
Beverages/analysis , Pistacia , Plant Extracts/chemistry , Polyphenols , Animals , Antioxidants/analysis , Milk/chemistry , Pistacia/chemistry , Polyphenols/analysis , Sugars , Sweetening Agents
10.
Food Chem ; 357: 129757, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33872868

ABSTRACT

Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29-103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03-0.76 min and interval width of 0.33-8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet's accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.

11.
Phytother Res ; 35(7): 3590-3609, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33666283

ABSTRACT

Plants of the genus Brassica occupy the top place among vegetables in the world. This genus, which contains a group of six related species of a global economic significance, three of which are diploid: Brassica nigra (L.) K. Koch, Brassica oleracea L., and Brassica rapa L. and three are amphidiploid species: Brassica carinata A. Braun, Brassica juncea (L.) Czern., and Brassica napus L. These varieties are divided into oily, fodder, spice, and vegetable based on their morphological structure, chemical composition, and usefulness of plant organs. The present review provides information about habitat, phytochemical composition, and the bioactive potential of Brassica plants, mainly antioxidant, antimicrobial, anticancer activities, and clinical studies in human. Brassica vegetables are of great economic importance around the world. At present, Brassica plants are grown together with cereals and form the basis of global food supplies. They are distinguished by high nutritional properties from other vegetable plants, such as low fat and protein content and high value of vitamins, fibers along with minerals. In addition, they possess several phenolic compounds and have a unique type of compounds namely glucosinolates that differentiate these crops from other vegetables. These compounds are also responsible for numerous biological activities to the genus Brassica as described in this review.


Subject(s)
Brassica , Phytochemicals , Vegetables , Brassica/chemistry , Glucosinolates , Humans , Phytochemicals/pharmacology , Phytotherapy , Vegetables/chemistry
12.
Front Pharmacol ; 11: 571459, 2020.
Article in English | MEDLINE | ID: mdl-33192514

ABSTRACT

Analysis of the most relevant studies on the pharmacological properties and molecular mechanisms of psoralidin, a bioactive compound from the seeds of Cullen corylifolium (L.) Medik. confirmed its complex therapeutic potential. In the last years, the interest of the scientific community regarding psoralidin increased, especially after the discovery of its benefits in estrogen-related diseases and as a chemopreventive agent. Growing preclinical pieces of evidence indicate that psoralidin has anticancer, antiosteoporotic, anti-inflammatory, anti-vitiligo, antibacterial, antiviral, and antidepressant-like effects. Here, we provide a comprehensive and critical review of psoralidin on its bioavailability, pharmacological activities with focus on molecular mechanisms and cell signaling pathways. In this review, we conducted literature research on the PubMed database using the following keywords: "Psoralidin" or "therapeutic effects" or "biological activity" or "Cullen corylifolium" in order to identify relevant studies regarding PSO bioavailability and mechanisms of therapeutic effects in different diseases based on preclinical, experimental studies. In the light of psoralidin beneficial actions for human health, this paper gathers complete information on its pharmacotherapeutic effects and opens new natural therapeutic perspectives in chronic diseases.

13.
Foods ; 9(11)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153068

ABSTRACT

Although the fate of anthocyanins along digestion has been a matter of research over the last decade, their bioaccessibility so far has been mainly assessed for single administered fruits or vegetables, which is far from the real scenario where they are co-ingested in a meal. Accordingly, the aim of this study was to evaluate the effect of simultaneous intake of fruit and vegetable on in vitro stability, bioaccessibility and uptake of anthocyanins. Black carrot and strawberry were used as food sources of anthocyanins. Anthocyanin identification and quantification were performed using HPLC-Qtof/HPLC-UV. Single matrices and mixtures thereof, were submitted to a standardized in vitro digestion procedure. Anthocyanin uptake was evaluated through an intestinal Caco-2 cell model. Our results showed an increased intestinal stability for specific anthocyanins as a consequence of co-digestion. The presence of the strawberry food matrix positively affected the bioaccessibility of the carrot associated cyanidin-based anthocyanins, whereas no reciprocal effect was observed for pelargonidin-based derivatives in the presence of the black carrot food matrix. Anthocyanin transport was maintained after co-administration. Overall, co-ingestion of black carrot and strawberry did not negatively affect the stability, bioaccessibility or uptake of cyanidin-based anthocyanins, although the effect on pelargonidin-based anthocyanins depended on the type of pelargonidin derivative.

14.
J Sci Food Agric ; 100(11): 4190-4198, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32378227

ABSTRACT

BACKGROUND: Spinach is well recognized as a functional food owing to its diverse nutritional composition, including polyphenols. Freezing is an efficient preservation method that is used to maintain the physical and nutritional characteristics and extend the shelf life of spinach. The aim of this study was to determine the changes in polyphenols in the samples taken from various production steps of the industrial freezing process of spinach, and to evaluate the bioaccessibility of these bioactive compounds for raw material, by-product, and frozen product using the standardized in vitro digestion model simulating the digestion in the mouth, stomach, and intestine. RESULTS: Ultra-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and high-performance liquid chromatography equipped with photodiode array detection analysis of spinach samples led to the identification of eight flavonoids and two phenolic acids. The changes occurring in flavonoids after blanching, chopping, and freezing steps were statistically not significant compared with the raw material (P > 0.05). On the other hand, by-product was found to contain significantly lower amounts of flavonoids (98% in total) and phenolic acids (90% in total) (P < 0.05) compared with the raw material. Furthermore, after in vitro digestion, frozen spinach was found to contain higher amounts of bioaccessible flavonoids (15% in total) and phenolic acids (16% in total) compared with fresh spinach. CONCLUSION: Overall, the current study highlighted that industrial freezing might be a good strategy to preserve the polyphenol content of fresh spinach as well as to enhance the total amount of bioaccessible polyphenols.


Subject(s)
Food Preservation/methods , Polyphenols/chemistry , Spinacia oleracea/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Digestion , Flavonoids/chemistry , Freezing , Humans , Mass Spectrometry , Models, Biological , Plant Leaves/chemistry , Plant Leaves/metabolism , Polyphenols/metabolism , Spinacia oleracea/metabolism
15.
Biomolecules ; 9(12)2019 11 25.
Article in English | MEDLINE | ID: mdl-31775378

ABSTRACT

Members of the Prosopis genus are native to America, Africa and Asia, and have long been used in traditional medicine. The Prosopis species most commonly used for medicinal purposes are P. africana, P. alba, P. cineraria, P. farcta, P. glandulosa, P. juliflora, P. nigra, P. ruscifolia and P. spicigera, which are highly effective in asthma, birth/postpartum pains, callouses, conjunctivitis, diabetes, diarrhea, expectorant, fever, flu, lactation, liver infection, malaria, otitis, pains, pediculosis, rheumatism, scabies, skin inflammations, spasm, stomach ache, bladder and pancreas stone removal. Flour, syrup, and beverages from Prosopis pods have also been potentially used for foods and food supplement formulation in many regions of the world. In addition, various in vitro and in vivo studies have revealed interesting antiplasmodial, antipyretic, anti-inflammatory, antimicrobial, anticancer, antidiabetic and wound healing effects. The phytochemical composition of Prosopis plants, namely their content of C-glycosyl flavones (such as schaftoside, isoschaftoside, vicenin II, vitexin and isovitexin) has been increasingly correlated with the observed biological effects. Thus, given the literature reports, Prosopis plants have positive impact on the human diet and general health. In this sense, the present review provides an in-depth overview of the literature data regarding Prosopis plants' chemical composition, pharmacological and food applications, covering from pre-clinical data to upcoming clinical studies.


Subject(s)
Plant Extracts/pharmacology , Prosopis/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry
16.
Molecules ; 24(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091784

ABSTRACT

Cucurbita genus has received a renowned interest in the last years. This plant species, native to the Americas, has served worldwide folk medicine for treating gastrointestinal diseases and intestinal parasites, among other clinical conditions. These pharmacological effects have been increasingly correlated with their nutritional and phytochemical composition. Among those chemical constituents, carotenoids, tocopherols, phenols, terpenoids, saponins, sterols, fatty acids, and functional carbohydrates and polysaccharides are those occurring in higher abundance. However, more recently, a huge interest in a class of triterpenoids, cucurbitacins, has been stated, given its renowned biological attributes. In this sense, the present review aims to provide a detailed overview to the folk medicinal uses of Cucurbita plants, and even an in-depth insight on the latest advances with regards to its antimicrobial, antioxidant and anticancer effects. A special emphasis was also given to its clinical effectiveness in humans, specifically in blood glucose levels control in diabetic patients and pharmacotherapeutic effects in low urinary tract diseases.


Subject(s)
Cucurbita/chemistry , Cucurbitacins/chemistry , Cucurbitacins/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Blood Glucose/drug effects , Ethnopharmacology , Humans , Medicine, Traditional , Plant Extracts/chemistry
17.
Food Chem ; 277: 12-24, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30502127

ABSTRACT

Nowadays, consumers expect to be sure that a food product complies with its label and demand further information regarding the geographical origin of the product. Beverages are among the most likely foods to be the target of food fraud. Adulteration through practices including, among the others, mixing or substituting the original material with other materials or useless parts of the same materials, which do not conform to the official standards and the food label, originate non-authentic beverages. For the determination of beverage authenticity, chemical, biomolecular and isotopic approaches could be applied depending on the level in the structure of the matter for obtaining the target information. This review highlights the recent key studies and related analytical approaches on authentication of beverages including fruit juices, coffee and tea, and wine and other alcoholic beverages.


Subject(s)
Beverages/analysis , Alcoholic Beverages/analysis , Coffee/chemistry , Discriminant Analysis , Fruit and Vegetable Juices/analysis , Gas Chromatography-Mass Spectrometry , Principal Component Analysis , Tea/chemistry , Wine/analysis
18.
Mol Nutr Food Res ; 62(22): e1800607, 2018 11.
Article in English | MEDLINE | ID: mdl-30231187

ABSTRACT

SCOPE: To explore the mechanisms behind the health effects of Aronia (Aronia melanocarpa), the microbial community modulating and anti-inflammatory effects of Aronia polyphenols are investigated by combining the similutor of the human intestinal microbial ecosystem (SHIME) with a coculture of intestinal and endothelial cells. RESULTS: Administration of Aronia juice (6.5g L-1 ) to the SHIME for 2 weeks increases the abundance of firmicutes to 92% in the ascending colon (AC), 85% in the transverse colon (TC), and 82% in the descending colon (DC; p < 0.001), proteobacteria (6.7% in AC, p < 0.001), and Akkermansia (14% in TC and 18% in DC, p < 0.001) and decreases the abundance of Bifidobacterium species, associated with a decrease of acetate and increase of propionate and butyrate, whereas no significant difference is observed upon placebo juice treatment. After addition of the digests to TNF-α challenged Caco-2/endothelial cocultures, intercellular adhesion molecule (ICAM)-1, IL-8, and monocyte chemoattractant protein-1 levels are significantly downregulated. Interestingly, Aronia juice treats digests from each colon compartment resulting in a stronger decrease of the ICAM-1 secretion (up to 73%, p < 0.001) compared to their corresponding placebo treated digests, thereby pointing to a polyphenol-dependent effect. CONCLUSIONS: Aronia polyphenols modulate intestinal microbial composition, induce beneficial short chain fatty acid production, and prevent inflammatory stress in endothelial cells. This opens perspectives for the use of Aronia polyphenols as prebiotics in the context of intestinal and cardiovascular health.


Subject(s)
Gastrointestinal Microbiome/physiology , Photinia/chemistry , Polyphenols/pharmacology , Biomarkers/metabolism , Caco-2 Cells , Chemokine CCL2/metabolism , Coculture Techniques , Fatty Acids, Volatile/metabolism , Fruit and Vegetable Juices , Glutathione/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , Interleukin-8/metabolism , Vascular Endothelial Growth Factor A/metabolism
19.
J Agric Food Chem ; 65(29): 6030-6041, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28664731

ABSTRACT

Cost-efficient (bio)chemical production processes are essential to evaluate the commercial and industrial applications of promising carbohydrates and also are essential to ensure economically viable production processes. Here, the synthesis of the naturally occurring disaccharide kojibiose (2-O-α-d-glucopyranosyl-d-glucopyranoside) was evaluated using different Bifidobacterium adolescentis sucrose phosphorylase variants. Variant L341I_Q345S was found to efficiently synthesize kojibiose while remaining fully active after 1 week of incubation at 55 °C. Process optimization allowed kojibiose production at the kilogram scale, and simple but efficient downstream processing, using a yeast treatment and crystallization, resulted in more than 3 kg of highly pure crystalline kojibiose (99.8%). These amounts allowed a deeper characterization of its potential in food applications. It was found to have possible beneficial health effects, including delayed glucose release and potential to trigger SCFA production. Finally, we compared the bulk functionality of highly pure kojibiose to that of sucrose, hereby mapping its potential as a new sweetener in confectionery products.


Subject(s)
Bifidobacterium adolescentis/metabolism , Disaccharides/metabolism , Bifidobacterium adolescentis/genetics , Biocatalysis , Caco-2 Cells , Fatty Acids, Volatile/metabolism , Fermentation , Gastrointestinal Microbiome , Glucose/metabolism , Humans , Industrial Microbiology , Intestinal Mucosa/metabolism , Intestines/microbiology , Sucrose/metabolism
20.
Mol Nutr Food Res ; 61(2)2017 02.
Article in English | MEDLINE | ID: mdl-27561918

ABSTRACT

SCOPE: The present study was developed to determine the ability of polyphenol-rich black carrot and its by-products, i.e., peel and pomace, to modulate the inflammatory response in tumor necrosis factor α (TNF-α) treated endothelial cells after gastrointestinal digestion and in a co-culture of intestinal Caco-2 and endothelial EA.hy926 cell model. RESULTS: The results indicated that after 4 h of treatment, the transport of anthocyanins and phenolic acids was higher for digested samples (1.3-7%) compared to the undigested samples (0-3.3%). The transported polyphenols were able to downregulate the secretion of pro-inflammatory markers, i.e. IL-8, monocyte chemoattractant protein 1, vascular endothelial growth factor, and intercellular adhesion molecule 1, under normal and tumor necrosis factor α induced inflammatory conditions. The most pronounced protective effects were observed with digested samples under inflammatory conditions, which significantly decreased the secretion of all markers from 120-203% down to 34-144% (p < 0.001). CONCLUSIONS: Overall, these results show that the polyphenol-rich black carrot absorption products may function through an inhibitory regulation of the inflammatory cascade in endothelial cells.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Daucus carota/chemistry , Polyphenols/pharmacology , Caco-2 Cells , Cell Line , Chemokine CCL2/metabolism , Coculture Techniques , Endothelial Cells/drug effects , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-8/metabolism , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/drug effects , Nitric Oxide/metabolism , Polyphenols/pharmacokinetics , Tumor Necrosis Factor-alpha/pharmacology , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...