Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(9): 090401, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37721850

ABSTRACT

In this Letter, we derive new bounds on a heat current flowing into a quantum L-particle system coupled with a Markovian environment. By assuming that a system Hamiltonian and a system-environment interaction Hamiltonian are extensive in L, we prove that the absolute value of the heat current scales at most as Θ(L^{3}) in a limit of large L. Furthermore, we present an example of noninteracting particles globally coupled with a thermal bath, for which this bound is saturated in terms of scaling. However, the construction of such a system requires many-body interactions induced by the environment, which may be difficult to realize with the existing technology. To consider more feasible cases, we consider a class of the system where any nondiagonal elements of the noise operator (derived from the system-environment interaction Hamiltonian) become zero in the system energy basis, if the energy difference exceeds a certain value ΔE. Then, for ΔE=Θ(L^{0}), we derive another scaling bound Θ(L^{2}) on the absolute value of the heat current, and the so-called superradiance belongs to a class for which this bound is saturated. Our results are useful for evaluating the best achievable performance of quantum-enhanced thermodynamic devices, including far-reaching applications such as quantum heat engines, quantum refrigerators, and quantum batteries.

2.
Phys Rev Lett ; 128(18): 180602, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35594102

ABSTRACT

We propose a quantum-enhanced heat engine with entanglement. The key feature of our scheme is superabsorption, which facilitates enhanced energy absorption by entangled qubits. Whereas a conventional engine with N separable qubits provides power with a scaling of P=Θ(N), our engine uses superabsorption to provide power with a quantum scaling of P=Θ(N^{2}). This quantum heat engine also exhibits a scaling advantage over classical ones composed of N-particle Langevin systems. Our work elucidates the quantum properties allowing for the enhancement of performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...