Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson ; 340: 107172, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35617918

ABSTRACT

Professor Shimon Vega (1943-2021) of the Weizmann Institute of Science passed away on the 16-th of November. Shimon Vega established theoretical frameworks to develop and explain solid-state nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP) techniques and methodologies. His departure left a profound mark on his many students, postdocs, and colleagues. Shortly after his passing, we all assembled spontaneously for an international online meeting to share our reflections and memories of our experiences in Shimon's lab and how they affected us deeply during that period of timeand throughout our scientific careers. These thoughts and feelings were put here into writing.

2.
Phys Chem Chem Phys ; 24(12): 7311-7322, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35262101

ABSTRACT

Dynamic nuclear polarization (DNP) at high magnetic fields has become a prominent technique for signal enhancement in nuclear magnetic resonance (NMR). In static samples, the highest DNP enhancement is usually observed for high radical concentrations in the range of 15-40 mM. Under these conditions, the dominant DNP mechanism for broad-line radicals is the electron-electron spectral-diffusion-based indirect cross effect (iCE). To further increase the DNP performance, broadband microwave irradiation is often applied. Until now, the theory of iCE was not rigorously combined with broadband microwave irradiation. This paper fills this gap by extending the iCE theory to explicitly include broadband irradiation. We demonstrate that our theory allows for quantitative fitting of the DNP spectra lineshapes using four different datasets acquired at 3.4 T and 7 T. We find that the DNP mechanism changes with an increase in the excitation bandwidth. While with narrowband continuous-wave irradiation the DNP mechanism is a combination of the solid effect (SE) and iCE, it shifts toward iCE with increasing excitation bandwidth until, at high bandwidth, the iCE completely dominates the DNP spectrum - this effect was not accounted for previously.

3.
Chem Commun (Camb) ; 54(41): 5237-5240, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29726557

ABSTRACT

We demonstrate that changing the backbone between peptides, peptoids and the underexplored dual N/Cα-substituted peptoids analogues allows for control over the preferred conformation of the intrinsically disordered biomimetic oligomers. The conformation tunability is directly probed using electron paramagnetic resonance (EPR), and is shown to manifest itself in differences in the nanoparticle-oligomer hybridization propensity.


Subject(s)
Peptidomimetics/chemistry , Electron Spin Resonance Spectroscopy , Nanoparticles/chemistry , Protein Conformation
4.
Phys Chem Chem Phys ; 18(16): 11017-41, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27047995

ABSTRACT

Dynamic nuclear polarization (DNP) experiments on samples with several types of magnetic nuclei sometimes exhibit "cross-talk" between the nuclei, such as different nuclei having DNP spectra with similar shapes and enhancements. In this work we demonstrate that while at 20 K the DNP spectra of (1)H and (2)H nuclei, in a sample composed of 50% v/v (1)H2O/DMSO-d6 and containing 40 mM TEMPOL, are different and can be analyzed using the indirect cross effect (iCE) model, at 6 K the DNP spectra of both (1)H and (2)H nuclei become identical. In addition we experimentally demonstrate that there exists an efficient polarization exchange between the two nuclear pools at this temperature. Both of these results are hallmark predictions of the thermal mixing (TM) formalism. However, the origin of these observations cannot, in our case, be explained using the standard TM formalism, as in our sample the electron reservoir cannot be described by a single non-Zeeman spin temperature, which is a prerequisite of TM. This conclusion follows from the analysis of the electron electron double resonance (ELDOR) experiments on our sample and is similar to the previously published results. Consequently, another mechanism must be used in order to explain these "cross-talk" effects. The heteronuclear cross effect (hnCE) DNP mechanism, previously introduced based on the simulations of the spin evolution in small model systems, results in "cross-talk" effects between two types of nuclei that are similar to the experimental ones seen in this work. In particular we show that the hnCE mechanism exhibits polarization transfer between the nuclei and that there exists a clear relationship between the steady state polarizations of the two types of nuclei which may, in the future, be correlated with the phenomenon observed in the two types of bulk nuclear signals in samples during DNP experiments. It is suggested that the hnCE electrons are a possible source for the process that equalizes the bulk enhancements of the (1)H and (2)H nuclei and are responsible for the observed cross-talk effects.

5.
Phys Chem Chem Phys ; 17(8): 6053-65, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25640165

ABSTRACT

Dynamic Nuclear Polarization (DNP) experiments on solid dielectrics can be described in terms of the Solid Effect (SE) and Cross Effect (CE) mechanisms. These mechanisms are best understood by following the spin dynamics in electron-nuclear and electron-electron-nuclear model systems, respectively. Recently it was shown that the frequency swept DNP enhancement profiles can be reconstructed by combining basic SE and CE DNP spectra. However, this analysis did not take into account the role of the electron spectral diffusion (eSD), which can result in a dramatic loss of electron polarization along the EPR line. In this paper we extend the analysis of DNP spectra by including the influence of the eSD process on the enhancement profiles. We show for an electron-electron-nuclear model system that the change in nuclear polarization can be caused by direct MW irradiation on the CE electron transitions, resulting in a direct CE (dCE) enhancement, or by the influence of the eSD process on the spin system, resulting in nuclear enhancements via a process we term the indirect CE (iCE). We next derive the dependence of the basic SE, dCE, and iCE DNP spectra on the electron polarization distribution along the EPR line and on the MW irradiation frequency. The electron polarization can be obtained from ELDOR experiments, using a recent model which describes its temporal evolution in real samples. Finally, DNP and ELDOR spectra, recorded for a 40 mM TEMPOL sample at 10-40 K, are analyzed. It is shown that the iCE is the major mechanism responsible for the bulk nuclear enhancement at all temperatures.

6.
Phys Chem Chem Phys ; 17(1): 226-44, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25384575

ABSTRACT

Dynamic nuclear polarization is typically explained either using microscopic systems, such as in the solid effect and cross effect mechanisms, or using the macroscopic formalism of spin temperature which assumes that the state of the electrons can be described using temperature coefficients, giving rise to the thermal mixing mechanism. The distinction between these mechanisms is typically made by measuring the DNP spectrum - i.e. the nuclear enhancement profile as a function of irradiation frequency. In particular, we have previously used the solid effect and cross effect mechanisms to explain temperature dependent DNP spectra. Our past analysis has however neglected the effect of depolarization of the electrons resulting from the microwave (MW) irradiation. In this work we concentrate on this electron depolarization process and perform electron-electron double resonance (ELDOR) experiments on TEMPOL and trityl frozen solutions, using a 3.34 Tesla magnet and at 2.7-30 K, in order to measure the state of the electron polarization during DNP. The experiments indicate that a significant part of the EPR line is affected by the irradiation due to spectral diffusion. Using a theoretical framework based on rate equations for the polarizations of the different electron spin packets and for those of the nuclei we simulated the various ELDOR line-shapes and reproduced the MW frequency and irradiation time dependence. The obtained electron polarization distribution cannot be described using temperature coefficients as required by the classical thermal mixing mechanism, and therefore the DNP mechanism cannot be described by thermal mixing. Instead, the theoretical framework presented here for the analysis of the ELDOR data forms a basis for future interpretation of DNP spectra in combination with EPR measurements.

7.
J Magn Reson ; 236: 117-25, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121563

ABSTRACT

Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion.

8.
Appl Magn Reson ; 44(6): 649-670, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23687407

ABSTRACT

In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimal temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...