Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 272(5266): 1310-4, 1996 May 31.
Article in English | MEDLINE | ID: mdl-8650540

ABSTRACT

The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules per second) are 6.4 X 10(26) for C2H6, 1.2 X 10(27) for CH4, 9.8 X 10(27) for CO, and 1.7 X 10(29) for H2O. An abundance of C2H6 comparable to that of CH4 implies that ices in C/1996 B2 Hyakutake did not originate in a thermochemically equilibrated region of the solar nebula. The abundances are consistent with a kinetically controlled production process, but production of C2H6 by gas-phase ion molecule reactions in the natal cloud core is energetically forbidden. The high C2H6/CH4 ratio is consistent with production of C2H6 in icy grain mantles in the natal cloud, either by photolysis of CH4-rich ice or by hydrogen-addition reactions to acetylene condensed from the gas phase.


Subject(s)
Carbon Monoxide/analysis , Ethane/analysis , Meteoroids , Methane/analysis , Water/analysis , Extraterrestrial Environment , Ice , Spectrum Analysis
2.
Science ; 265(5172): 625-31, 1994 Jul 29.
Article in English | MEDLINE | ID: mdl-17752758

ABSTRACT

The spatial organization and time dependence of Jupiter's temperatures near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

3.
Science ; 252(5005): 537-42, 1991 Apr 26.
Article in English | MEDLINE | ID: mdl-17838486

ABSTRACT

The spatial organization and time dependence of Jupiter's stratospheric temperatures have been measured by observing thermal emission from the 7.8-micrometer CH(4) band. These temperatures, observed through the greater part of a Jovian year, exhibit the influence of seasonal radiative forcing. Distinct bands of high temperature are located at the poles and mid-latitudes, while the equator alternates between warm and cold with a period of approximately 4 years. Substantial longitudinal variability is often observed within the warm mid-latitude bands, and occasionally elsewhere on the planet. This variability includes small, localized structures, as well as large-scale waves with wavelengths longer than approximately 30,000 kilometers. The amplitudes of the waves vary on a time scale of approximately 1 month; structures on a smaller scale may have lifetimes of only days. Waves observed in 1985, 1987, and 1988 propagated with group velocities less than +/-30 meters per second.

4.
Astron Astrophys ; 187(1-2): 653-60, 1987 Nov.
Article in English | MEDLINE | ID: mdl-11542214

ABSTRACT

2 to 20 micrometers photometry of the inner dust coma of comet Halley was obtained at the NASA IRTF on Mar 6.85, 12.8, 13.75, 17.7, and 24.8. Positions offset 10" were measured as well as the central brightness. The strength of the 10 micrometers emission feature was observed to vary with location in the coma. The infrared emission is in general agreement with the dust size distribution measured from the Vega and Giotto spacecraft. Mar 6.8, 17.7, and 24.8 corresponded to strong dust jet activity. The strength of the 10 micrometers silicate emission is shown to be a sensitive indicator of grain size and thus of jet activity. Dust production rate on March 13.75, 6 h before Giotto encounter, was approximately 10(7) gm s-1.


Subject(s)
Cosmic Dust/analysis , Meteoroids , Spectrophotometry, Infrared , Astronomy/instrumentation , Carbon/analysis , Extraterrestrial Environment , Silicates/analysis , Spacecraft/instrumentation , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...