Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(18): 8607-8617, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37197385

ABSTRACT

We present a joint experimental and theoretical study of the through-space charge transfer (CT) TADF molecule TpAT-tFFO. The measured fluorescence has a singular Gaussian line shape but two decay components, coming from two distinct molecular CT conformers, energetically only 20 meV apart. We determined the intersystem crossing rate (1 × 107 s-1) to be 1 order of magnitude faster than radiative decay, and prompt emission (PF) is therefore quenched within 30 ns, leaving delayed fluorescence (DF) observable from 30 ns onward as the measured reverse intersystem crossing (rISC) rate is >1 × 106 s-1, yielding a DF/PF ratio >98%. Time-resolved emission spectra measured between 30 ns and 900 ms in films show no change in the spectral band shape, but between 50 and 400 ms, we observe a ca. 65 meV red shift of the emission, ascribed to the DF to phosphorescence transition, with the phosphorescence (lifetime >1 s) emanating from the lowest 3CT state. A host-independent thermal activation energy of 16 meV is found, indicating that small-amplitude vibrational motions (∼140 cm-1) of the donor with respect to the acceptor dominate rISC. TpAT-tFFO photophysics is dynamic, and these vibrational motions drive the molecule between maximal rISC rate and high radiative decay configurations so that the molecule can be thought to be "self-optimizing" for the best TADF performance.

2.
Chemistry ; 29(2): e202202809, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36214291

ABSTRACT

Emitters for organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) require small singlet (S1 )-triplet (T1 ) energy gaps as well as fast intersystem crossing (ISC) transitions. These transitions can be mediated by vibronic mixing with higher excited states Sn and Tn (n=2, 3, 4, …). For a prototypical TADF emitter consisting of a triarylamine and a dicyanobenzene moiety (TAA-DCN) it is shown that these higher states can be located energetically by time-resolved near-infrared (NIR) spectroscopy.

3.
Chem Sci ; 13(23): 7057-7066, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774172

ABSTRACT

Quantum chemical studies employing combined density functional and multireference configuration interaction methods suggest five excited electronic states to be involved in the prompt and delayed fluorescence emission of TpAT-tFFO. Three of them, a pair of singlet and triplet charge transfer (CT) states (S1 and T1) and a locally excited (LE) triplet state (T3), can be associated with the (Me → N) conformer, the other two CT-type states (S2 and T2) form the lowest excited singlet and triplet states of the (Me → Ph) conformer. The two conformers, which differ in essence by the shearing angle of the face-to-face aligned donor and acceptor moieties, are easily interconverted in the electronic ground state whereas the reorganization energy is substantial in the excited singlet state, thus explaining the two experimentally observed time constants of prompt fluorescence emission. Forward and reverse intersystem crossing between the singlet and triplet CT states is mediated by vibronic spin-orbit interactions involving the LE T3 state. Low-frequency vibrational modes altering the distance and alignment of the donor and acceptor π-systems tune the S1 and T3 states (likewise S2 and T3) into and out of resonance. The enhancement of intersystem crossing due to the interplay of vibronic and spin-orbit coupling is considered a general feature of organic through-space charge-transfer thermally activated delayed fluorescence emitters.

4.
Phys Chem Chem Phys ; 22(6): 3217-3233, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31993597

ABSTRACT

The absorption and emission characteristics of (ppz)2(dipy)IrIII, (ppz)(dipy)PtII and (ppz)(dipy)PdII, where ppz stands for phenylpyrazole and dipy for a phenyl meso-substituted dipyrrin ligand, have been investigated by means of combined density functional theory and multireference configuration interaction including scalar relativistic and spin-orbit coupling effects. These results were compared with experimental spectra. The complexes exhibit a high density of low-lying electronically excited states originating from ligand-centered (LC) and metal-to-ligand charge transfer (MLCT) states involving the dipyrrin ligand. In addition, metal-centered (MC) states are found to be low-lying in the Pd complex. In all three cases, the first strong absorption band and the phosphorescence emission band stem from LC excitations on the dipyrrin ligand with small MLCT contributions. The MLCT states show more pronounced relaxation effects than the LC states, with the consequence that the first excited state with predominant singlet multiplicity is of SMLCT/LC type in the heavier Ir and Pt complexes. Substantial spin-orbit coupling between SMLCT/LC and TLC enables fast and efficient intersystem crossing (ISC) and a high triplet quantum yield. Phosphorescence rate constants are rather small in accord with the dominant LC character of the transitions. Out-of-plane distortion promotes nonradiative decay of the excited state population via the MC states thus explaining the lower phosphorescence quantum yield of the Pt complex. The spectral properties of the Pd complex are different in many aspects. Optimization of the S1 state yields a dipyrrin intraligand charge transfer (ILCT) state with highly distorted nuclear arrangement in the butterfly conformers leading to nonradiative deactivation. In contrast, the primarily excited SLC state and the SMLCT/LC state of the twist conformer have nearly equal adiabatic excitation energies. The lack of a driving force toward the SMLCT/LC minimum, the high fluorescence rate constant of the bright SLC state and its moderately efficient ISC to the triplet manifold explain the experimentally observed dual emission of the Pd complex at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...