Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Histochem ; 121(2): 189-197, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30591314

ABSTRACT

The aim of this study was to investigate the role of the nitric oxide (NO) system in ovarian function, by determining if arginine (Arg) supplementation impacts follicle number, cell proliferation, and expression of the NO system members in nutritionally compromised ewes. Ewes were randomly assigned into maintenance (C, 100% requirements), excess (O; 2xC), or restricted (U; 0.6xC) diets 8 weeks prior to Arg treatment. Ewes were individually fed twice daily with pelleted diets. Ewes from each nutritional group were randomly assigned to one of two treatments: saline or Arg, which was initiated on day 0 of the estrous cycle and administered 3 times per day. Ovaries were collected at the early-luteal, mid-luteal and late-luteal/follicular phases of the estrous cycle to determine 1) the number of surface follicles, 2) follicle cell proliferation marked by Ki67 protein expression, and 3) expression of endothelial nitric oxide (eNOS; NOS3) and soluble guanylyl cyclase beta (sGC; GUCY1B3) protein and mRNA in granulosa (G) and theca (T) layers using immunohistochemistry followed by image analysis and qPCR, respectively. During nutritional treatment, C maintained body weight, O gained 6±1.2 kg, and U lost 14±1.3 kg. Our data show that: 1) Ki67 was expressed in all ovarian compartments, eNOS protein was detected in blood vessels of T and stroma, and sGC protein was detected in T cells, and blood vessels of T layer and other ovarian compartments; 2) plane of nutrition affected the number of surface follicles, and thus folliculogenesis, cell proliferation in the T layer, eNOS and sGC protein expression in T, and NOS3 and GUCY1B3 mRNA expression in G; 3) Arg treatment affected cell proliferation in G and T, eNOS and sGC protein expression in T, mRNA expression of NOS3 in T in all groups, and GUCY1B3 in G depending on the stage of the estrous cycle; and 4) G and T cell proliferation, and expression of eNOS and sGC protein in T was affected by the stage of the estrous cycle. Our data demonstrated that plane of nutrition and Arg are involved in the regulation of follicular functions in non-pregnant sheep.


Subject(s)
Arginine/metabolism , Cell Proliferation/physiology , Nitric Oxide Synthase Type III/metabolism , Ovary/metabolism , Animals , Corpus Luteum/metabolism , Estrous Cycle/physiology , Female , Follicle Stimulating Hormone/metabolism , Nitric Oxide/metabolism , Ovarian Follicle/metabolism , Sheep
2.
Gen Comp Endocrinol ; 269: 131-140, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30195024

ABSTRACT

The aim of this study was to evaluate angiopoietin (ANGPT) 1 and 2, and tyrosine-protein kinase receptor 2 (TIE2) expression in the corpora lutea (CL) of FSH-treated, or non-treated sheep administered arginine (Arg) or vehicle (saline, Sal), and fed a control (C), excess (O) or restricted (U) diet. Ewes from each dietary group were treated with Arg or Sal (experiment 1), and with FSH (experiment 2). Luteal tissues were collected at the early-, mid- and/or late-luteal phases of the estrous cycle. Protein and mRNA expression was determined using immunohistochemistry followed by image analysis, and quantitative RT-PCR, respectively. The results demonstrated that ANGPT1 and TIE2 proteins were localized to luteal capillaries and endothelial cells of larger blood vessels, and ANGPT2 was localized to tunica media of larger blood vessels. TIE2 protein was also present in luteal cells. In experiment 1, ANGPT1 protein expression was greater in O than C during early- and mid-luteal phases, and was greatest during late-luteal phase, less at the mid- and least at the early-luteal phase; 2) TIE2 protein expression was greatest at the mid-, less at the early- and least at the late-luteal phase; 3) ANGPT1 and 2 mRNA expression was greater at the mid- and late- than the early-luteal phase, and TIE2 mRNA expression was greatest at the late-, less at the mid- and least at the early-luteal phase. The ANGPT1/2 ratio was less at the early- than mid- or late-luteal phases. In experiment 2, ANGPT1 protein expression was greater in O during the mid-luteal phase than in other groups, and was greater at the mid- than early-luteal phase. TIE2 protein expression was highest at the mid-, less at the early- and least during the late-luteal phase. ANGPT1 and 2, and TIE2 mRNA expression was higher at the mid- than the early-luteal phase. During mid-luteal phase, ANGPT1 mRNA expression was greater in C than O and U, ANGPT2 was greatest in C, less in O and least in U, and TIE2 mRNA expression was greater in C than O and U. The ANGPT1/2 ratio was higher in U than in any other group. Comparison of FSH vs. Sal treatment effects (experiment 2 vs. experiment 1) demonstrated that FSH affected ANGPT1 and/or -2, and TIE2 protein and mRNA expression depending on luteal phase and/or diet. Thus, expression of ANGPTs and TIE2 in the CL changes during the luteal lifespan, indicating their involvement in luteal vascular formation, stabilization and degradation. Moreover, this study has demonstrated that plane of nutrition and/or FSH treatment affect the ANGPT system, and may alter luteal vascularity and luteal function in sheep.


Subject(s)
Angiopoietins/metabolism , Arginine/pharmacology , Corpus Luteum/metabolism , Follicle Stimulating Hormone/pharmacology , Luteal Phase/drug effects , Nutritional Physiological Phenomena , Angiopoietins/genetics , Animals , Corpus Luteum/drug effects , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Sheep
3.
Theriogenology ; 108: 7-15, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29175682

ABSTRACT

To evaluate expression of progesterone receptor (PGR) AB in follicle stimulating hormone (FSH)-treated or non-treated sheep administered with arginine (Arg) or saline (Sal) fed a control (C), excess (O) or restricted (U) diet, uterine tissues were collected at the early, mid and/or late luteal phases. In exp. 1, ewes from each diet were randomly assigned to one of two treatments, Arg or Sal administration three times daily from day 0 of the first estrous cycle until uterine tissue collection. In exp. 2, ewes were injected twice daily with FSH on days 13-15 of the first estrous cycle. Uterine tissues were immunostained to detect PGR followed by image analysis. PGR were detected in luminal epithelium (LE), endometrial glands (EG), endometrial stroma (ES), myometrium (Myo), and endometrial and myometrial blood vessels. The percentage of PR-positive cells and/or intensity of staining were affected by phase of the estrous cycle, plane of nutrition, and/or FSH but not by Arg. In exp. 1, percentage of PGR-positive cells in LE and EG but not in ES and Myo was greater at the early and mid than late luteal phase, was not affected by plane of nutrition, and was similar in LE and EG. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in LE, EG and Myo, and was the greatest in LE, less in EG, and least in ES and Myo. In exp. 2, percentage of PGR-positive cells in LE, EG, ES and Myo was affected by phase of the estrous cycle, but not by plane of nutrition; was greater at the early than mid luteal phase; and was greatest in LE and EG, less in luminal (superficial) ES and Myo and least in deep ES. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in all compartments but ES, and was the greatest in LE and luminal EG, less in deep EG, and least in ES and Myo. Comparison of data for FSH (superovulated) and Sal-treated (non-superovulated) ewes demonstrated that FSH affected PR expression in all evaluated uterine compartments depending on plane of nutrition and phase of the estrous cycle. Thus, PGR are differentially distributed in uterine compartments, and PGR expression is affected by nutritional plane and FSH, but not Arg depending on phase of the estrous cycle. Such changes in dynamics of PGR expression indicate that diet plays a regulatory role and that FSH-treatment may alter uterine functions.


Subject(s)
Arginine/pharmacology , Estrous Cycle/physiology , Follicle Stimulating Hormone/pharmacology , Receptors, Progesterone/metabolism , Uterus/metabolism , Animals , Arginine/administration & dosage , Female , Follicle Stimulating Hormone/administration & dosage , Gene Expression Regulation/drug effects , Hormones/administration & dosage , Hormones/pharmacology , Nutritional Status , Receptors, Progesterone/genetics , Sheep , Uterus/drug effects
4.
Reproduction ; 153(3): 253-265, 2017 03.
Article in English | MEDLINE | ID: mdl-27899720

ABSTRACT

Functions of corpus luteum (CL) are influenced by numerous factors including hormones, growth and angiogenic factors, nutritional plane and dietary supplements such as arginine (Arg), a semi-essential amino acid and precursor for proteins, polyamines and nitric oxide (NO). The aim of this study was to determine if Arg supplementation to ewes fed different planes of nutrition influences: (1) progesterone (P4) concentrations in serum and luteal tissue, (2) luteal vascularity, cell proliferation, endothelial NO synthase (eNOS) and receptor (R) soluble guanylate cyclase ß protein and mRNA expression and (3) luteal mRNA expression for selected angiogenic factors during the estrous cycle. Ewes (n = 111) were categorized by weight and randomly assigned to one of three nutritional planes: maintenance control (C), overfed (2× C) and underfed (0.6× C) beginning 60 days prior to onset of estrus. After estrus synchronization, ewes from each nutritional plane were assigned randomly to one of two treatments: Arg or saline. Serum and CL were collected at the early, mid and late luteal phases. The results demonstrated that: (1) nutritional plane affected ovulation rates, luteal vascularity, cell proliferation and NOS3, GUCY1B3, vascular endothelial growth factor (VEGF) and VEGFR2 mRNA expression, (2) Arg affected luteal vascularity, cell proliferation and NOS3, GUCY1B3, VEGF and VEGFR2 mRNA expression and (3) luteal vascularity, cell proliferation and the VEGF and NO systems depend on the stage of the estrous cycle. These data indicate that plane of nutrition and/or Arg supplementation can alter vascularization and expression of selected angiogenic factors in luteal tissue during the estrous cycle in sheep.


Subject(s)
Arginine/pharmacology , Biomarkers/metabolism , Estrous Cycle/physiology , Estrus Synchronization/drug effects , Luteal Phase/physiology , Ovulation/physiology , Angiogenesis Inducing Agents/metabolism , Animal Nutritional Physiological Phenomena , Animals , Arginine/administration & dosage , Estrous Cycle/drug effects , Female , Luteal Phase/drug effects , Ovulation/drug effects , Progesterone/analysis , Sheep
5.
Theriogenology ; 87: 212-220, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27686034

ABSTRACT

The aim of this study was to evaluate lipid droplet (LD) expression in uteri of FSH-treated or nontreated sheep administered with arginine (Arg) or vehicle (saline, Sal) and fed a control (C), excess (overfed, O) or restricted (underfed, U) diet. In experiment 1, ewes from each diet were randomly assigned to Arg or Sal treatments administered three times daily starting on Day 0 of the first estrous cycle until blood sample and uterine tissue collection at the early- or mid-luteal phase of the second estrous cycle or the late-luteal phase of the first estrous cycle. In experiment 2, ewes were injected twice daily with FSH on Days 13 to 15 of the first estrous cycle, and blood samples and uterine tissue were collected at the early- and mid-luteal phases of the second estrous cycle. Cryopreserved in optimum cutting temperature (OCT) compound, cross-sections of uterine horn were stained with boron-dipyrromethene (BODIPY; marker of LDs) followed by 4',6-diamidino-2-phenylindole (DAPI) staining and image analysis to determine the proportion (%) of area occupied by LD in luminal epithelium (LE) and endometrial glands (EGs). Control ewes maintained, O ewes gained, and U ewes lost body weight during the experiments. Serum progesterone concentration was not affected by nutritional plane or Arg treatment and was 5.5-fold greater in FSH- than Sal-treated ewes. LDs were detected in LE and superficial EG (close to LE) but not deep EG, or other uterine compartments, and area occupied by LD was greater in LE than in EG. In experiment 1, in LE and EG, area occupied by LDs was greater in C than in O or U; greater in Arg than in Sal; and greater at the late-, less at mid-, and least at early-luteal phases. In experiment 2, in LE and EG, area occupied by LDs was greater at mid- than in early-luteal phase. Comparison of data from FSH-treated and nontreated ewes (e.g., experiment 1 vs. experiment 2) demonstrated that FSH increased the area occupied by LD in LE and EG regardless of diet. Interactions between FSH treatment, stage of the estrous cycle, and plane of nutrition demonstrated that FSH increased the area occupied by LD in LE and EG at the mid-luteal phase in O and U. Thus, LDs are differentially distributed in uterine compartments, and area occupied by LD in endometrium is affected by nutritional plane, Arg or FSH, and stage of the estrous cycle. Such changes in dynamics of LD in the endometrium during the estrous cycle indicate their specific role in uterine functions.


Subject(s)
Arginine/pharmacology , Estrous Cycle/physiology , Follicle Stimulating Hormone/metabolism , Lipid Droplets/metabolism , Sheep/physiology , Uterus/physiology , Animal Nutritional Physiological Phenomena , Animals , Arginine/administration & dosage , Diet/veterinary , Female
6.
Can J Physiol Pharmacol ; 93(11): 973-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26314312

ABSTRACT

The aim was to evaluate the effects of nutritional plane on in vitro progesterone (P4) secretion by granulosa (G) cells cultured in the presence or absence of effectors of the nitric oxide (NO) system. Ewes were randomly assigned into three nutritional groups: control (C), overfed (O; 2 × C), or underfed (U; 0.6 × C). Follicular development was induced by FSH injections. On day 15 of the estrous cycle, G cells were isolated and cultured with or without DETA-NONOate (NO donor), L-NAME (NO synthase [S] inhibitor), Arg and (or) LH for 8 h. DETA-NONOate decreased basal and LH-stimulated P4 secretion, and L-NAME increased basal P4 secretion in all groups. In U, Arg decreased LH-stimulated P4 secretion. These data demonstrate that (i) plane of nutrition affects basal P4 secretion by G cells, (ii) the NO donor decreases, NOS inhibitor increases but Arg does not affect basal P4 secretion, and (iii) effects of Arg on LH-stimulated P4 secretion are affected by plane of nutrition in FSH-treated sheep. Thus, plane of nutrition affects G cell function, and the NO system is involved in the regulation of basal and LH-stimulated P4 secretion. The mechanism of the NO system effects on secretory activity of G cells remains to be elucidated.


Subject(s)
Granulosa Cells/metabolism , Nitric Oxide/metabolism , Nutritional Status/physiology , Progesterone/metabolism , Animals , Body Weight/drug effects , Body Weight/physiology , Female , Granulosa Cells/drug effects , Nitric Oxide Donors/pharmacology , Nutritional Status/drug effects , Sheep
7.
Theriogenology ; 83(5): 808-16, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25498518

ABSTRACT

The aim of this study was to determine the effects of diet and arginine (Arg) treatment on serum concentrations of selected metabolites and metabolic and reproductive hormones in nonpregnant ewes. Sixty days before the onset of estrus (Day 0), Rambouillet ewes were randomly assigned to one of three dietary groups: maintenance control (C; N = 16; 100% National Research Council requirements), overfed (O; N = 16; 2 × C), or underfed (U; N = 16, 0.6 × C) to achieve and maintain three different body conditions during their estrous cycle(s). At Day 0, ewes from each nutritional group were randomly assigned to receive one of two treatments: saline (Sal) or Arg (L-Arg-HCl; 155 µmol Arg per kg of body weight [BW]; intravenous), which was administered three times per day for 21 or 26 days. Blood samples were collected on Days 0, 6, 10, 12, 16, 21, and 26 of Sal or Arg treatment for evaluation of Arg, nitric oxide metabolite, cholesterol, glucose, insulin, insulin-like growth factor 1, leptin, and progesterone. For a time-response trial, blood samples were collected at 0, 1, 2, 4, and 7 hours after Sal or Arg treatment at the mid-luteal phase to determine serum Arg concentrations. During the 11-week study, C maintained body weight, O gained 9.6 ± 0.7 kg, and U lost 13.9 ± 0.1 kg. Overall, serum concentrations of Arg, glucose, insulin, insulin-like growth factor 1, leptin, and progesterone were greater (P < 0.05) in O ewes than C and/or U ewes and were not affected by Arg treatment. Serum Arg concentration increased at 1 and 2 hours and decreased to basal level at 4 and 7 hours after Arg treatment. These data reinforce the importance of diet in regulation of metabolic and endocrine functions, and demonstrated that the dose and duration of Arg treatment used in this study does not alter serum metabolites or hormones in nonpregnant ewes of various nutritional planes.


Subject(s)
Arginine/pharmacology , Diet/veterinary , Estrous Cycle/physiology , Sheep/physiology , Administration, Intravenous , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Arginine/administration & dosage , Body Weight , Estrous Cycle/blood , Insulin/blood , Leptin/blood , Progesterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...