Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Radiol ; 21(5): 740-751, 2024 May.
Article in English | MEDLINE | ID: mdl-38220040

ABSTRACT

INTRODUCTION: Transarterial radioembolization (TARE) is one of the most promising therapeutic options for hepatic masses. Radiomics features, which are quantitative numeric features extracted from medical images, are considered to have potential in predicting treatment response in TARE. This article aims to provide meta-analytic evidence and critically appraise the methodology of radiomics studies published in this regard. METHODS: A systematic search was performed on PubMed, Scopus, Embase, and Web of Science. All relevant articles were retrieved, and the characteristics of the studies were extracted. The Radiomics Quality Score and Checklist for Evaluation of Radiomics Research were used to assess the methodologic quality of the studies. Pooled sensitivity, specificity, and area under the receiver operating characteristic curve in predicting objective response were determined. RESULTS: The systematic review included 15 studies. The average Radiomics Quality Score of these studies was 11.4 ± 2.1, and the average Checklist for Evaluation of Radiomics Research score was 33± 6.7. There was a notable correlation (correlation coefficient = 0.73) between the two metrics. Adherence to quality measures differed considerably among the studies and even within different components of the same studies. The pooled sensitivity and specificity of the radiomics models in predicting complete or partial response were 83.5% (95% confidence interval 76%-88.9%) and 86.7% (95% confidence interval 78%-92%), respectively. CONCLUSION: Radiomics models show great potential in predicting treatment response in TARE of hepatic lesions. However, the heterogeneity seen between the methodologic quality of studies may limit the generalizability of the results. Future initiatives should aim to develop radiomics signatures using multiple external datasets and adhere to quality measures in radiomics methodology.


Subject(s)
Embolization, Therapeutic , Liver Neoplasms , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Embolization, Therapeutic/methods , Treatment Outcome , Radiopharmaceuticals , Sensitivity and Specificity , Predictive Value of Tests , Radiomics
2.
Am J Transplant ; 24(4): 591-605, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37949413

ABSTRACT

Body mass index is often used to determine kidney transplant (KT) candidacy. However, this measure of body composition (BC) has several limitations, including the inability to accurately capture dry weight. Objective computed tomography (CT)-based measures may improve pre-KT risk stratification and capture physiological aging more accurately. We quantified the association between CT-based BC measurements and waitlist mortality in a retrospective study of 828 KT candidates (2010-2022) with clinically obtained CT scans using adjusted competing risk regression. In total, 42.5% of candidates had myopenia, 11.4% had myopenic obesity (MO), 68.8% had myosteatosis, 24.8% had sarcopenia (probable = 11.2%, confirmed = 10.5%, and severe = 3.1%), and 8.6% had sarcopenic obesity. Myopenia, MO, and sarcopenic obesity were not associated with mortality. Patients with myosteatosis (adjusted subhazard ratio [aSHR] = 1.62, 95% confidence interval [CI]: 1.07-2.45; after confounder adjustment) or sarcopenia (probable: aSHR = 1.78, 95% CI: 1.10-2.88; confirmed: aSHR = 1.68, 95% CI: 1.01-2.82; and severe: aSHR = 2.51, 95% CI: 1.12-5.66; after full adjustment) were at increased risk of mortality. When stratified by age, MO (aSHR = 2.21, 95% CI: 1.28-3.83; P interaction = .005) and myosteatosis (aSHR = 1.95, 95% CI: 1.18-3.21; P interaction = .038) were associated with elevated risk only among candidates <65 years. MO was only associated with waitlist mortality among frail candidates (adjusted hazard ratio = 2.54, 95% CI: 1.28-5.05; P interaction = .021). Transplant centers should consider using BC metrics in addition to body mass index when a CT scan is available to improve pre-KT risk stratification at KT evaluation.


Subject(s)
Kidney Transplantation , Sarcopenia , Humans , Sarcopenia/diagnostic imaging , Sarcopenia/etiology , Risk Assessment/methods , Retrospective Studies , Obesity , Muscular Atrophy , Tomography, X-Ray Computed , Body Composition
SELECTION OF CITATIONS
SEARCH DETAIL
...