Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale Horiz ; 8(7): 887-891, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37066860

ABSTRACT

A biocompatible and edible colorimetric timer is obtained by exploiting the dynamic colour changes of the cholesteric liquid crystalline mesophases of hydroxypropyl cellulose (HPC) in aqueous suspensions. The edible timer is encapsulated between semi permeable membranes made of shellac. The cholesteric organisation of the HPC provides vibrant colouration, while the shellac layers allow tuning of the evaporation rate of water from the mesophase, which results in a colour change. Due to the biocompatibility of the components and the direct read-out of the system, i.e. the colour change can be visually detected, and the developed timer can be implemented as a colorimetric sensor with potential to be used in food packaging, and as a smart labelling system.

2.
J Mater Chem B ; 10(41): 8386-8397, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35766427

ABSTRACT

Tuning the self-assembled structures in amorphous hydrogels will enrich the functionality of hydrogels. In this study, we tuned the structure of a photonic hydrogel, which consists of polymeric lamellar bilayers entrapped inside a polyacrylamide network, simply by molecular triggering using an ionic surfactant. Owing to the binding of ionic surfactants (sodium dodecyl sulfate), the lamellar bilayers comprising non-ionic polymeric surfactants [poly(dodecyl glyceryl itaconate)] changed to micelles, whereas the unidirectional lamellar structure was preserved in the hydrogel. The bilayer-micelle structure transition caused a dramatic decrease in the swelling anisotropy and mechanical softening of the photonic gel. With the micelle structure, the softened gel shows fast (0.3 s) and reversible color change over the entire visible light range in response to a small mechanical pressure (5 kPa). This low stress-induced color-changing hydrogel could be applied as a visual tactile sensor in various fields, especially in biomedical engineering.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Surface-Active Agents/chemistry , Micelles , Sodium Dodecyl Sulfate/chemistry , Hydrogels , Anisotropy
3.
ACS Nano ; 14(11): 15361-15373, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33090776

ABSTRACT

Cellulose nanocrystals (CNCs) can spontaneously assemble into chiral nematic films capable of reflecting circularly polarized light in the visible range. As many other photonic materials obtained by bottom-up approaches, CNC films often display defects that greatly impact their visual appearance. Here, we study the optical response of defects in photonic CNC films, coupling optical microscopy with hyperspectral imaging, and we compare it to optical simulations of discontinuous cholesteric structures of increasing complexity. Cross-sectional SEM observations of the film structure guided the choice of simulation parameters and showed excellent agreement with experimental optical patterns. More importantly, it strongly suggests that the last fraction of CNCs to self-assemble, upon solvent evaporation, does not undergo the typical nucleation and growth pathway, but a spinodal decomposition, an alternative self-assembly pathway so far overlooked in cast films and that can have far-reaching consequences on choices of CNC sources and assembly conditions.

4.
Adv Mater ; 32(19): e1906889, 2020 May.
Article in English | MEDLINE | ID: mdl-32249481

ABSTRACT

Aqueous suspensions of cellulose nanocrystals (CNCs) are known to self-assemble into a chiral nematic liquid crystalline phase, leading to solid-state nanostructured colored films upon solvent evaporation, even in the presence of templating agents. The angular optical response of these structures, and therefore their visual appearance, are completely determined by the spatial arrangement of the CNCs when the drying suspension undergoes a transition from a flowing and liquid crystalline state to a kinetically arrested state. Here, it is demonstrated how the angular response of the final film allows for retrieval of key physical properties and the chemical composition of the suspension at the onset of the kinetic arrest, thus capturing a snapshot of the past. To illustrate this methodology, a dynamically evolving sol-gel coassembly process is investigated by adding various amounts of organosilica precursor, namely, 1,2-bis(trimethoxysilyl)ethane. The influence of organosilica condensation on the kinetic arrest can be tracked and thus explains the angular response of the resulting films. The a posteriori and in situ approach is general; it can be applied to a variety of additives in CNC-based films and it allows access to key rheological information of the suspension without using any dedicated rheological technique.

5.
Phys Rev Mater ; 3(4)2019 Apr.
Article in English | MEDLINE | ID: mdl-33225202

ABSTRACT

Cellulose nanocrystals (CNCs) are bio-sourced chiral nanorods that can form stable colloidal suspensions able to spontaneously assemble above a critical concentration into a cholesteric liquid crystal, with a cholesteric pitch usually in the micron range. When these suspensions are dried on a substrate, solid films with a pitch of the order of few hundreds of nanometers can be produced, leading to intense reflection in the visible range. However, the resulting cholesteric nanostructure is usually not homogeneous within a sample and comports important variations of the cholesteric domain orientation and pitch, which affect the photonic properties. In this work, we first propose a model accounting for the formation of the photonic structure from the vertical compression of the cholesteric suspension upon solvent evaporation, starting at the onset of the kinetic arrest of the drying suspension and ending when solvent evaporation is complete. From that assumption, various structural features of the films can be derived, such as the variation of the cholesteric pitch with the domain tilt, the orientation distribution density of the final cholesteric domains and the distortion of the helix from the unperturbed cholesteric case. The angular-resolved optical response of such films is then derived, including the iridescence and the generation of higher order reflection bands, and a simulation of the angular optical response is provided, including its tailoring under external magnetic fields. Second, we conducted an experimental investigation of CNC films covering a structural and optical analysis of the films. The macroscopic appearance of the films is discussed and complemented with angular-resolved optical spectroscopy, optical and electron microscopy, and our quantitative analysis shows an excellent agreement with the proposed model. This allows us to access the precise composition and the pitch of the suspension when it transited into a kinetically arrested phase directly from the optical analysis of the film. This work highlights the key role that the anisotropic compression of the kinetically arrested state plays in the formation of CNC films and is relevant to the broader case of structure formation in cast dispersions and colloidal self-assembly upon solvent evaporation.

6.
Adv Mater ; 29(32)2017 Aug.
Article in English | MEDLINE | ID: mdl-28635143

ABSTRACT

The self-assembly of cellulose nanocrystals is a powerful method for the fabrication of biosourced photonic films with a chiral optical response. While various techniques have been exploited to tune the optical properties of such systems, the presence of external fields has yet to be reported to significantly modify their optical properties. In this work, by using small commercial magnets (≈ 0.5-1.2 T) the orientation of the cholesteric domains is enabled to tune in suspension as they assemble into films. A detailed analysis of these films shows an unprecedented control of their angular response. This simple and yet powerful technique unlocks new possibilities in designing the visual appearance of such iridescent films, ranging from metallic to pixelated or matt textures, paving the way for the development of truly sustainable photonic pigments in coatings, cosmetics, and security labeling.

7.
ACS Nano ; 10(9): 8443-9, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27564644

ABSTRACT

Complex hierarchical architectures are ubiquitous in nature. By designing and controlling the interaction between elementary building blocks, nature is able to optimize a large variety of materials with multiple functionalities. Such control is, however, extremely challenging in man-made materials, due to the difficulties in controlling their interaction at different length scales simultaneously. Here, hierarchical cholesteric architectures are obtained by the self-assembly of cellulose nanocrystals within shrinking, micron-sized aqueous droplets. This confined, spherical geometry drastically affects the colloidal self-assembly process, resulting in concentric ordering within the droplet, as confirmed by simulation. This provides a quantitative tool to study the interactions of cellulose nanocrystals beyond what has been achieved in a planar geometry. Our developed methodology allows us to fabricate truly hierarchical solid-state architectures from the nanometer to the macroscopic scale using a renewable and sustainable biopolymer.

8.
ACS Appl Mater Interfaces ; 6(15): 12302-6, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25007291

ABSTRACT

Cellulose nanocrystals (CNCs) form chiral nematic phases in aqueous suspensions that can be preserved upon evaporation of water. The resulting films show an intense directional coloration determined by their microstructure. Here, microreflection experiments correlated with analysis of the helicoidal nanostructure of the films reveal that the iridescent colors and the ordering of the individual nematic layers are strongly dependent on the polydispersity of the size distribution of the CNCs. We show how this affects the self-assembly process, and hence multidomain color formation in such bioinspired structural films.


Subject(s)
Cellulose/chemistry , Nanoparticles/chemistry , Color , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Polystyrenes/chemistry
9.
Soft Matter ; 10(30): 5589-96, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24962139

ABSTRACT

Direct observation of hydrogel contact with a solid surface in water is indispensable for understanding the friction, lubrication, and adhesion of hydrogels under water. However, this is a difficult task since the refractive index of hydrogels is very close to that of water. In this paper, we present a novel method to in situ observe the macroscopic contact of hydrogels with a solid surface based on the principle of critical refraction. This method was applied to investigate the sliding friction of a polyacrylamide (PAAm) hydrogel with glass by using a strain-controlled parallel-plate rheometer. The study revealed that when the compressive pressure is not very high, the hydrogel forms a heterogeneous contact with the glass, and a macro-scale water drop is trapped at the soft interface. The pre-trapped water spreads over the interface to decrease the contact area with the increase in sliding velocity, which dramatically reduces the friction of the hydrogel. The study also revealed that this heterogeneous contact is the reason for the poor reproducibility of hydrogel friction that has been often observed in previous studies. Under the condition of homogeneous full contact, the molecular origin of hydrogel friction in water is discussed. This study highlights the importance of direct interfacial observation to reveal the friction mechanism of hydrogels.

11.
Opt Express ; 20(6): 6421-8, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418524

ABSTRACT

We demonstrate the multifolding Origami manufacture of elastically-deformable Distributed Bragg Reflector (DBR) membranes that reversibly color-tune across the full visible spectrum without compromising their peak reflectance. Multilayer films composed of alternating transparent rubbers are fixed over a 300 µm wide pinhole and deformed by pressure into a concave shape. Pressure-induced color tuning from the near-IR to the blue arises from both changes in thickness of the constituent layers and from tilting of the curved DBR surfaces. The layer thickness and color distribution upon deformation, the band-gap variation and the repeatability of cyclic color tuning, are mapped through micro-spectroscopy. Such spatially-dependent thinning of the film under elastic deformation produces spatial chirps in the color, and are shown to allow reconstruction of complex 3D strain distributions.


Subject(s)
Colorimetry/instrumentation , Lenses , Membranes, Artificial , Refractometry/instrumentation , Color , Computer-Aided Design , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Microbubbles , Stress, Mechanical
12.
Small ; 8(3): 432-40, 2012 Feb 06.
Article in English | MEDLINE | ID: mdl-22174177

ABSTRACT

Morphology control on the 10 nm length scale in mesoporous TiO(2) films is crucial for the manufacture of high-performance dye-sensitized solar cells. While the combination of block-copolymer self-assembly with sol-gel chemistry yields good results for very thin films, the shrinkage during the film manufacture typically prevents the build-up of sufficiently thick layers to enable optimum solar cell operation. Here, a study on the temporal evolution of block-copolymer-directed mesoporous TiO(2) films during annealing and calcination is presented. The in-situ investigation of the shrinkage process enables the establishment of a simple and fast protocol for the fabrication of thicker films. When used as photoanodes in solid-state dye-sensitized solar cells, the mesoporous networks exhibit significantly enhanced transport and collection rates compared to the state-of-the-art nanoparticle-based devices. As a consequence of the increased film thickness, power conversion efficiencies above 4% are reached.

SELECTION OF CITATIONS
SEARCH DETAIL
...