Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(5): 107215, 2024 May.
Article in English | MEDLINE | ID: mdl-38522518

ABSTRACT

Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.


Subject(s)
Fluorometry , Glucose , Oocytes , Sodium-Glucose Transporter 1 , Xenopus laevis , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/chemistry , Animals , Humans , Fluorometry/methods , Glucose/metabolism , Oocytes/metabolism , Protein Binding , Patch-Clamp Techniques , Galactose/metabolism , Fructose/metabolism , Fructose/chemistry , Binding Sites
3.
J Mol Biol ; 434(5): 167464, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35077764

ABSTRACT

Sodium-glucose cotransporters (SGLTs) are responsible for sugar absorption in small intestine and renal tubule epithelial cells. These proteins have attracted clinical attention as a cause of malabsorption and as a target for diabetes drugs. Each SGLT isoform has strict selectivity for its monosaccharide substrate. Few studies have attempted to elucidate the structural basis of sugar selectivity by allowing generating SGLT mutants that bind substrates not normally transported or by reproducing the substrate specificity of other isoforms. In this study, we built a structural homology model for the substrate binding states of human SGLT1 (hSGLT1), which primarily transports glucose and galactose. We also performed electrophysiological analysis of hSGLT1 using various natural sugars and mutants. By mutating the K321 residue, which forms hydrophilic interactions in the sugar binding pocket, we induced mannose and allose transport. We also changed the glucose/galactose transport ratio, which reproduces the substrate specificity of the prokaryotic galactose transporter. By adding mutations one-by-one to the residues in the binding pocket, we were able to reproduce the substrate specificity of SGLT4, which transports fructose. This suggests that fructose, which exhibits various structures in equilibrium, binds to SGLT in a pyranose conformation. These results reveal one state of the structural basis that determines selective transport by SGLT. These findings will be useful for predicting the substrates of other glucose transporters and to design effective inhibitors.


Subject(s)
Sodium-Glucose Transporter 1 , Biological Transport , Fructose/metabolism , Galactose/metabolism , Glucose/metabolism , Humans , Models, Molecular , Mutation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Sodium-Glucose Transporter 1/chemistry , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/metabolism , Substrate Specificity
4.
Acta Med Okayama ; 74(4): 307-317, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32843762

ABSTRACT

We examined the effect of D-Tagatose on the growth of oral bacteria including Streptococcus mutans (S. mutans). Saliva collected from 10 healthy volunteers was plated on BHI medium (to culture total oral bacteria) and MBS medium (to culture S. mutans, specifically). Agar plates of BHI or MBS containing xylitol or D-Tagatose were cultured under aerobic or anaerobic conditions. We then counted the number of colonies. In BHI plates containing D-Tagatose, a complete and significant reduction of bacteria occurred under both aerobic and anaerobic conditions. In MSB medium, significant reduction of S. mutans was also observed. We then performed a doubleblind parallel randomized trial with 19 healthy volunteers. They chewed gum containing xylitol, D-Tagatose, or both for 4 weeks, and their saliva was collected weekly and plated on BHI and MSB media. These plates were cultured under anaerobic conditions. Total bacteria and S. mutans were not effectively reduced in either the D-Tagatose or xylitol gum group. However, S. mutans was significantly reduced in volunteers chewing gum containing both D-Tagatose and xylitol. Thus, D-Tagatose inhibited the growth of S. mutans and many types of oral bacteria, indicating that D-Tagatose intake may help prevent dental caries, periodontitis, and many oral diseases.


Subject(s)
Dental Caries/prevention & control , Hexoses/administration & dosage , Streptococcus mutans/drug effects , Sweetening Agents/administration & dosage , Adult , Chewing Gum , Double-Blind Method , Female , Humans , Male , Pilot Projects , Saliva/microbiology , Streptococcus mutans/growth & development , Xylitol/administration & dosage
5.
FEBS Open Bio ; 8(11): 1804-1819, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30410860

ABSTRACT

Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor that is down-regulated in several cancer tissues and tumor cell lines. Overexpression of TXNIP causes cell cycle arrest at the G1/S checkpoint in the hepatocellular carcinoma cell line HuH-7. TXNIP contains putative phosphorylation sites, but the effects of its phosphorylation have not been fully characterized. TXNIP also contains two α-arrestin domains (N-arrestin and C-arrestin) whose functions are not fully understood. Here, we reveal an association between TXNIP and cell cycle regulatory proteins (p27kip1, Jun activation domain-binding protein 1 (JAB1), Cdk2, and cyclin E), suggesting its participation in cell cycle regulation. We observed phosphorylation of TXNIP and used both in vivo and in vitro kinase assays to demonstrate that TXNIP can be phosphorylated by p38 mitogen-activated protein kinase. Furthermore, we also identified Ser361 in TXNIP as one of the major phosphorylation sites. Cell cycle analysis showed that Ser361 phosphorylation participates in TXNIP-mediated cell cycle arrest. In addition, the C-arrestin domain may also play an important role in cell cycle arrest. We also showed that phosphorylation at Ser361 may be important for the association of TXNIP with JAB1 and that the C-arrestin domain is necessary for the nuclear localization of this molecule. Collectively, these studies reveal that TXNIP participates in cell cycle regulation through association with regulatory proteins, especially JAB1, and that C-arrestin-dependent nuclear localization is important for this function. This work may facilitate the development of a new cancer therapy strategy that targets TXNIP as a key molecule inhibiting cancer cell growth via cell cycle blockade at the G1/S checkpoint.

6.
Oncol Lett ; 15(3): 3422-3428, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29456721

ABSTRACT

The present study was designed to evaluate the effect of one rare sugar, D-allose, on normal human cells and cutaneous tissue, and to investigate the radiosensitizing and chemosensitizing potential of D-allose in an in vivo model of head and neck cancer. Results indicated that D-allose did not inhibit the growth of normal human fibroblasts TIG-1 cells, and no apoptotic changes were observed after D-allose and D-glucose treatment. The mRNA expression levels of thioredoxin interacting protein (TXNIP) in TIG-1 cells after D-allose treatment increased by 2-fold (50.4 to 106.5). Conversely, the mRNA expression levels of TXNIP in HSC3 cancer cells increased by 74-fold (1.5 to 110.6), and the thioredoxin (TRX)/TXNIP ratio was markedly reduced from 61.7 to 1.4 following D-allose treatment. Combined multiple treatments with docetaxel, radiation and D-allose resulted in the greatest antitumor response in the in vivo model. Hyperkeratosis, epidermal thickening and tumor necrosis factor-α immunostaining were observed following irradiation treatment, but these pathophysiological reactions were reduced following D-allose administration. Thus, the present findings suggest that D-allose may enhance the antitumor effects of chemoradiotherapy whilst sparing normal tissues.

7.
Oncol Rep ; 39(3): 1292-1298, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29328484

ABSTRACT

D­allose is a rare sugar which has been shown to have growth inhibitory effects in several kinds of malignancies. However, the effect of D­allose on lung cancer progression has not been previously studied. To investigate the antitumour effect of D­allose in lung cancer cells and its mechanism, human non-small cell lung cancer (NSCLC) cell lines (squamous cell carcinomas: EBC1 and VMRC­LCD; adenocarcinomas: A549, HI1017, RERF­LC­A1 and NCI-H1975) were treated with D­allose (50 mM) with or without cisplatin (5 µM). D­allose inhibited cell growth, particularly in EBC1 and VMRC­LCD cells. In combination with cisplatin, D­allose had a synergistic growth inhibitory effect. D­allose increased the expression of thioredoxin interacting protein (TXNIP) at mRNA and protein levels. D­allose decreased the proportion of cells in G1 phase and increased those in S and G2/M phases. For in vivo experiments, EBC1 cells were inoculated into BALB/c-nu mice. After tumourigenesis, D­allose and cisplatin were injected. In this mouse xenograft model, additional treatment with D­allose showed a significantly greater tumour inhibitory effect compared with cisplatin alone, accompanied by lower Ki­67 and higher TXNIP expression. In conclusion, D­allose inhibited NSCLC cell proliferation in vitro and tumour progression in vivo. In combination with cisplatin, D­allose had an additional antitumour effect. Specifically, increased TXNIP expression and subsequent G2/M arrest play a role in D­allose-mediated antitumour effects in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , Drug Synergism , Glucose/pharmacology , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Drug Therapy, Combination , Female , Humans , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Signal Transduction
8.
J Cell Biochem ; 119(6): 4627-4635, 2018 06.
Article in English | MEDLINE | ID: mdl-29266408

ABSTRACT

Proper balance between lipolysis and lipogenesis in adipocytes determines the release of free fatty acids (FFA) and glycerol, which is crucial for whole body lipid homeostasis. Although, dysregulation of lipid homeostasis contributes to various metabolic complications such as insulin resistance, the regulatory mechanism remains elusive. This study clarified the individual and combined roles for glucocorticoid receptor (GCR) and peroxisome proliferator-activated receptor (PPAR)γ pathways in lipid metabolism of adipocytes. In mature 3T3-L1 adipocytes, GCR activation using dexamethasone upregulated adipose triglyceride lipase (ATGL) and downregulated phosphoenolpyruvate carboxykinase (PEPCK), resulting in enhanced glycerol release into the medium. In contrast, PPARγ ligand pioglitazone modestly upregulated ATGL and hormone sensitive lipase (HSL), but markedly enhanced PEPCK and glycerol kinase (GK), thereby suppressed glycerol release. Dexamethasone showed permissive like effect on PPARγ target genes including perilipin A and aP2, therefore co-administration of dexamethasone and pioglitazone demonstrated synergistic upregulation of these enzymes excepting PEPCK, of which downregulation by dexamethasone was abolished by pioglitazone to the level above control. Thus, the excessive glycerol release was prevented as the net outcome of the co-administration. Consistently, the bodipy stain demonstrated that dexamethasone reduced the amount of cytosolic lipid, which was preserved in co-treated adipocytes. Moreover, silencing of PPARγ suppressed the synergistic effects of co-treatment on the lipolytic and lipogenic genes, and therefore the GCR pathway indeed involves PPARγ. In conclusion, crosstalk between GCR and PPARγ is largely synergistic but counter-regulatory in lipogenic genes, of which enhancement prevents excessive glycerol and possibly FFA release by glucocorticoids into the circulation.


Subject(s)
Adipocytes/metabolism , Lipolysis , PPAR gamma/metabolism , Receptors, Glucocorticoid/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Animals , Dexamethasone/pharmacology , Mice , PPAR gamma/genetics , Pioglitazone/pharmacology , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/genetics
9.
Biochem Biophys Res Commun ; 486(1): 76-82, 2017 04 22.
Article in English | MEDLINE | ID: mdl-28263744

ABSTRACT

How nutritional excess leads to inflammatory responses in metabolic syndrome is not well characterized. Here, we evaluated the effects of ω-3 polyunsaturated fatty acid specific G-protein coupled receptor 120 (GPR120) activation on inflammatory pathways in adipocytes, and the influence of this process on macrophage migration. Using 3T3-L1 adipocytes, we found that agonizing GPR120 using its synthetic ligand, GSK137647, attenuated both basal and lipopolysaccharide-induced production of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2). Moreover, the intervention reduced the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and nuclear translocation of nuclear factor kappa-B p65 subunit (p65). Furthermore, the silencing of GPR120 itself reduced IL-6 and CCL2 mRNA expression. Inhibition of protein kinase C (PKC) augmented the down-regulatory effect of GSK137647 on IL-6 and CCL2 mRNA. Using a luciferase assay to measure promoter activity of the IL-6 gene in mouse embryonic fibroblasts, we demonstrated that exogenous transfection of GPR120 alone reduced the promoter activity, which was augmented by GSK137647. Inhibition of PKC further reduced the promoter activity. Nevertheless, RAW 264.7 macrophages grown in conditioned medium collected from GSK137647-treated adipocytes attenuated the expressions of matrix metalloproteinases-9 and -3, and tissue inhibitor of metalloproteinase-1. Conditioned medium also inhibited the lipopolysaccharide-induced migration of these macrophages. Taken together, these findings provide critical evidence that although GPR120 is associated with a PKC-mediated pro-inflammatory pathway, the direct inhibitory effects of GPR120 on the nuclear factor kappa B pathway are anti-inflammatory. Moreover, GPR120 activity can attenuate the adipocyte-mediated enhanced production of extracellular matrix-modulating factors in macrophages and can reduce their migration by a paracrine mechanism.


Subject(s)
Adipocytes/metabolism , Adipokines/metabolism , Inflammation Mediators/metabolism , Receptors, G-Protein-Coupled/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipokines/genetics , Animals , Blotting, Western , Cell Line , Cell Movement/drug effects , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , NF-KappaB Inhibitor alpha/metabolism , Phosphorylation/drug effects , Protein Kinase C/metabolism , RNA Interference , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transcription Factor RelA/metabolism
10.
Biogerontology ; 18(1): 55-68, 2017 02.
Article in English | MEDLINE | ID: mdl-27734200

ABSTRACT

Deterioration of adipocyte function due to increased oxidative stress predisposes patients to metabolic disorders in advanced age. However, the roles of tumor suppressors in such conditions remain largely unknown. Therefore, we aimed to address their dynamics in aged adipocytes using a long-term culture model. We compared 3T3-L1 adipocytes at 17-19 days (long-term) with those at 8-10 days (short-term) after initiation of adipogenic induction for mimicking 'aged' and 'young' adipocytes, respectively. H2O2 release and dihydroethidium (DHE) staining was increased, while superoxide dismutase (SOD) activity was reduced in long-term cultured adipocytes, which is suggestive of enhanced oxidative stress in this group. Moreover, qRT-PCR revealed increased mRNAs of Nox4 (a subunit of NADPH oxidase complex), Ccl2 (a proinflammatory chemokine) and Il6 [a marker of senescence-associated secretory phenotype (SASP)] along with decreased levels of Pparγ, Adipoq and Slc2a4 (genes related to glucose metabolism). These alterations were associated with increased expression of the tumor suppressors alternate-reading-frame protein p19Arf (Arf) and p16Ink4a. However, silencing of Arf reduced mRNAs of Adipoq and Slc2a4 and enhanced release of Il6. The effect was opposite in Arf overexpressing adipocytes, which showed reduced superoxide production as assessed with DHE staining and SOD activity. Western blots showed that Arf negatively regulates the phosphorylation of Akt. Luciferase assay in Hela cells additionally suggested that Arf negatively regulates Il6 transcriptional activity through a PI3 K/Akt mediated pathway. These findings strongly suggest that the enhanced Arf expression in oxidative stress plays compensatory protective roles against aging-related dysregulation of gene expression in adipocytes.


Subject(s)
Adipocytes/metabolism , Aging/metabolism , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Expression Regulation, Developmental/physiology , Reactive Oxygen Species/metabolism , 3T3-L1 Cells , Animals , HeLa Cells , Humans , Mice , Up-Regulation/physiology
11.
Heliyon ; 2(1): e00055, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27441238

ABSTRACT

Although various parts of J. curcas (Jatropha curcas L., Euphorbiaceae) have long been used as traditional folk medicines for their antiviral, analgesic, and/or antidotal efficacies, we are the first to investigate the role of anti-carcinogenicity of isoamericanol A (IAA) from the seed extract. Our results showed that IAA is capable of inhibiting cell proliferation in a dose-dependent manner on the human cancer cell lines of MCF-7, MDA-MB231, HuH-7, and HeLa. Flow cytometry analysis showed IAA significantly induces cell cycle arrest at G2/M on MCF-7 cells. At both protein and mRNA levels examined by western blot and real-time PCR, the results revealed increased expression of BTG2 (B-cell translocation gene 2), p21 (p21(WAF1/CIPI) ), and GADD45A (growth arrest and DNA-damage-inducible, alpha) after IAA treatment, but inversed expression in CDK1 (cyclin-dependent kinase 1) and cyclins B1 and B2. All these effects contribute to G2/M cell cycle arrest. Furthermore, these results coincide with the changes in molecular expressions determined by DNA-microarray analysis. Our findings indicate that IAA has an inhibitory effect on cell proliferation of MCF-7 through cell cycle arrest, giving it great potential as a future therapeutic reagent for cancers.

12.
Tohoku J Exp Med ; 238(2): 131-41, 2016 02.
Article in English | MEDLINE | ID: mdl-26829886

ABSTRACT

Glucose is a major energy source for mammalian cells and is transported into cells via cell-specific expression of various glucose transporters (GLUTs). Especially, cancer cells require massive amounts of glucose as an energy source for their dysregulated growth and thus over-express GLUTs. d-allose, a C-3 epimer of d-glucose, is one of rare sugars that exist in small quantities in nature. We have shown that d-allose induces the tumor suppressor gene coding for thioredoxin interacting protein (TXNIP) and inhibits cancer cell growth by G1 cell cycle arrest. It has also been reported that GLUTs including GLUT1 are over-expressed in many cancer cell lines, which may contribute to larger glucose utilization. Since d-allose suppresses the growth of cancer cells through the upregulation of TXNIP expression, our present study focused on whether d-allose down-regulates GLUT1 expression via TXNIP expression and thus suppresses cancer cell growth. Western blot and real-time PCR analyses revealed that d-allose significantly induced TXNIP expression and inhibited GLUT1 expression in a dose-dependent manner in three human cancer cell lines: hepatocellular carcinoma (HuH-7), Caucasian breast adenocarcinoma (MDA-MB-231), and neuroblastoma (SH-SY5Y). In these cell lines, d-allose treatment inhibited cell growth. Importantly, d-allose treatment decreased glucose uptake, as measured by the uptake of 2-deoxy d-glucose. Moreover, the reporter assays showed that d-allose decreased the expression of luciferase through the hypoxia response element present in the tested promoter region. These results suggest that d-allose may cause the inhibition of cancer growth by reducing both GLUT1 expression and glucose uptake.


Subject(s)
Glucose Transporter Type 1/genetics , Glucose/pharmacology , Neoplasms/genetics , Neoplasms/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Response Elements , Up-Regulation/drug effects
13.
Mol Cell Endocrinol ; 406: 10-8, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25697344

ABSTRACT

Vascular endothelial growth factor-A (VEGF-A) released from adipocytes promotes angiogenesis; and thereby ameliorates the local hypoxia-induced adipose inflammation and insulin resistance. Here, we newly found that eicosapentaenoic acid (EPA) upregulated both mRNA expression and release of VEGF-A in mature 3T3-L1 adipocytes. Silencing mRNA of G-protein coupled receptor 120 (GPR120) and specific inhibition of peroxisome proliferator-activated receptor γ (PPARγ) by GW9662 respectively attenuated the EPA-induced augmentation of VEGF-A release by adipocytes. Furthermore, transfection of GPR120 gene alone and PPARγ gene alone to HEK293 cells respectively increased the promoter activity of VEGF-A as assessed by luciferase reporter assay, which was further augmented when both genes were co-transfected. Promoter deletion analysis and chromatin immunoprecipitation assay revealed that co-transfection of GPR120 enhanced EPA-induced PPARγ binding to PPAR-response element in VEGF-A promoter region. Thus, by the synchronized activation of a membrane receptor GRP120 and a nuclear receptor PPARγ, EPA enhances VEGF-A production in adipocytes.


Subject(s)
Adipocytes/metabolism , Eicosapentaenoic Acid/pharmacology , PPAR gamma/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects , Vascular Endothelial Growth Factor A/genetics , 3T3-L1 Cells , Adipocytes/drug effects , Animals , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Models, Biological , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding/drug effects , Protein Kinase C/metabolism , Response Elements/genetics , Vascular Endothelial Growth Factor A/metabolism
14.
Drug Des Devel Ther ; 9: 525-35, 2015.
Article in English | MEDLINE | ID: mdl-25632221

ABSTRACT

BACKGROUND: The fundamental cause of overweight and obesity is consumption of calorie-dense foods. We have introduced a zero-calorie sweet sugar, d-psicose (d-allulose), a rare sugar that has been proven to have strong antihyperglycemic and antihyperlipidemic effects, and could be used as a replacement of natural sugar for the obese and diabetic subjects. AIM: Above mentioned efficacy of d-psicose (d-allulose) has been confirmed in our previous studies on type 2 diabetes mellitus (T2DM) model Otsuka Long-Evans Tokushima Fatty (OLETF) rats with short-term treatment. In this study we investigated the long-term effect of d-psicose in preventing the commencement and progression of T2DM with the mechanism of preservation of pancreatic ß-cells in OLETF rats. METHODS: Treated OLETF rats were fed 5% d-psicose dissolved in water and control rats only water. Nondiabetic control rats, Long-Evans Tokushima Otsuka (LETO), were taken as healthy control and fed water. To follow the progression of diabetes, periodic measurements of blood glucose, plasma insulin, and body weight changes were continued till sacrifice at 60 weeks. Periodic in vivo body fat mass was measured. On sacrifice, pancreas, liver, and abdominal adipose tissues were collected for various staining tests. RESULTS: d-Psicose prevented the commencement and progression of T2DM till 60 weeks through the maintenance of blood glucose levels, decrease in body weight gain, and the control of postprandial hyperglycemia, with decreased levels of HbA1c in comparison to nontreated control rats. This improvement in glycemic control was accompanied by the maintenance of plasma insulin levels and the preservation of pancreatic ß-cells with the significant reduction in inflammatory markers. Body fat accumulation was significantly lower in the treatment group, with decreased infiltration of macrophages in the abdominal adipose tissue. CONCLUSION: Our findings suggest that the rare sugar d-psicose could be beneficial for the prevention and control of obesity and hyperglycemia with the preservation of ß-cells in the progression of T2DM.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Fructose/pharmacology , Hypoglycemic Agents/pharmacology , Abdominal Fat/drug effects , Abdominal Fat/metabolism , Abdominal Fat/physiopathology , Adiposity/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Obesity Agents/pharmacology , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Disease Progression , Glycated Hemoglobin/metabolism , Inflammation/blood , Inflammation/physiopathology , Inflammation/prevention & control , Inflammation Mediators/metabolism , Insulin/blood , Insulin Resistance , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Obesity/blood , Obesity/physiopathology , Obesity/prevention & control , Rats, Inbred OLETF , Time Factors , Weight Gain/drug effects
15.
Drug Des Devel Ther ; 8: 1955-64, 2014.
Article in English | MEDLINE | ID: mdl-25378908

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate intestinal absorption, organ distribution, and urinary elimination of the rare sugar D-psicose, a 3-carbon stereoisomer of D-fructose that is currently being investigated and which has been found to be strongly effective against hyperglycemia and hyperlipidemia. METHODS: This study was performed using radioactive D-psicose, which was synthesized enzymatically from radioactive D-allose. Concentrations in whole blood, urine, and organs were measured at different time points until 2 hours after both oral and intravenous administrations and 7 days after a single oral administration (100 mg/kg body weight) to Wistar rats. Autoradiography was also performed by injecting 100 mg/kg body weight of (14)C-labeled D-psicose or glucose intravenously to C3H mice. RESULTS: Following oral administration, D-psicose easily moved to blood. The maximum blood concentration (48.5±15.6 µg/g) was observed at 1 hour. Excretion to urine was 20% within 1 hour and 33% within 2 hours. Accumulation to organs was detected only in the liver. Following intravenous administration, blood concentration was decreased with the half-life=57 minutes, and the excretion to urine was up to almost 50% within 1 hour. Similarly to the results obtained with oral administration, accumulation to organs was detected only in the liver. Seven days after the single-dose oral administration, the remaining amounts in the whole body were less than 1%. Autoradiography of mice showed results similar to those in rats. High signals of (14)C-labeled D-psicose were observed in liver, kidney, and bladder. Interestingly, no accumulation of D-psicose was observed in the brain. CONCLUSION: D-psicose was absorbed well after oral administration and eliminated rapidly after both oral and intravenous administrations, with short duration of action. The study provides valuable pharmacokinetic data for further drug development of D-psicose. Because the findings were mainly based on animal study, it is necessary to implement human trials to study the metabolism pathway, which would give an important guide for human intake and food application of D-psicose.


Subject(s)
Fructose/pharmacokinetics , Fructose/urine , Intestinal Absorption , Administration, Intravenous , Administration, Oral , Animals , Fructose/administration & dosage , Fructose/blood , Mice , Mice, Inbred C3H , Rats , Rats, Wistar , Tissue Distribution
16.
Int J Oncol ; 45(5): 2044-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25109398

ABSTRACT

In this study we investigated the combined effects of docetaxel and d-allose in HSC3 human oral carcinoma cells. The dose enhancement ratios at the 25% survival level were 1.3 and 1.71 for combined treatment with 10 or 25 mM D-allose, respectively. Apoptosis was significantly increased by addition of D-allose. Additionally, a synchronous increase in the G(2)/M-phase population was observed after docetaxel plus D-allose treatment. In vivo experiments revealed that docetaxel plus D-allose was more effective than either agent alone. Thus, D-allose enhanced the anticancer effects of docetaxel, and combined treatment may be useful to achieve clinical efficacy with reduced toxicity.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Glucose/administration & dosage , Head and Neck Neoplasms/drug therapy , Mouth Neoplasms/drug therapy , Taxoids/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Combined Modality Therapy , Docetaxel , Humans , Taxoids/adverse effects
17.
Hypertens Res ; 37(7): 621-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24599011

ABSTRACT

Angiotensin (Ang) II receptor blockers (ARBs) alleviate obesity-related insulin resistance, which suggests an important role for the Ang II type 1 receptor (AT1R) in the regulation of adipocytokines. Therefore, we treated mature 3T3-L1 adipocytes with 50 µmol l(-1) of valsartan, a selective AT1R blocker without direct agonism to peroxisome proliferator-activated receptor (PPAR)-γ. In the absence of effective concentrations of Ang II, unstimulated mature adipocytes expressed and secreted high levels of interleukin (IL)-6. This constitutive proinflammatory activity was attenuated by the suppression of extracellular signal-regulated kinase phosphorylation by valsartan but was unaffected by the Ang II type 2 receptor blocker PD123319. COS7 cells co-transfected with AT1R and IL-6, which expressed NF-κB but lacked PPAR-γ, showed no constitutive but substantial ligand-dependent IL-6 reporter activity, which was counteracted by valsartan. Valsartan preserved cytosolic IκB-α and subsequently reduced nuclear NF-κB1 protein expression in mature adipocytes. Interestingly, valsartan did not increase PPAR-γ messenger RNA expression per se but enhanced the transcriptional activity of PPAR-γ in mature adipocytes; this enhancement was accompanied by upregulation of the PPAR coactivator (PGC)-1α. Moreover, T0090907, a PPAR-γ inhibitor, increased IL-6 expression, and this increase was attenuated by valsartan. Indeed, addition of valsartan without direct PPAR-γ agonism increased adiponectin production in mature adipocytes. Together, the findings indicate that valsartan blocks the constitutive AT1R activity involving the NF-κB pathway that limits PPAR-γ activity in mature adipocytes. Thus, inverse agonism of AT1R attenuates the spontaneous proinflammatory response and enhances the constitutive insulin-sensitizing activities of mature adipocytes, which may underlie the beneficial metabolic impacts of ARBs.


Subject(s)
Adipocytes/drug effects , Adipokines/genetics , Angiotensin II Type 1 Receptor Blockers/pharmacology , Drug Inverse Agonism , Obesity/metabolism , Receptor, Angiotensin, Type 1/physiology , Tetrazoles/pharmacology , Valine/analogs & derivatives , 3T3-L1 Cells , Active Transport, Cell Nucleus , Adipocytes/metabolism , Angiotensin II/pharmacology , Animals , COS Cells , Chlorocebus aethiops , Interleukin-6/genetics , Mice , NF-kappa B/metabolism , PPAR gamma/physiology , Valine/pharmacology , Valsartan
18.
BMC Cancer ; 13: 468, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24112473

ABSTRACT

BACKGROUND: Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. METHODS: Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. RESULTS: NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated Thr24 in FOXO1 and induced its nuclear translocation, thus increasing transcription of TXNIP, a tumor suppressor gene. Knock-down of TXNIP ameliorated the growth inhibitory effects of MK-801. CONCLUSIONS: Our results indicate that functional NMDA receptors are expressed in hepatocellular carcinomas and that the FOXO pathway is involved in the growth inhibitory effects of MK-801. This mechanism could be common in hepatocellular carcinomas examined, but other mechanisms such as ERK pathway could exist in other cancer cells as reported in lung carcinoma cells. Altered expression levels of FOXO target genes including cyclin D1 and p27 may contribute to the inhibition of G1/S cell cycle transition. Induction of the tumor suppressor gene TXNIP plays an important role in the growth inhibition by MK-801. Our report provides new evidence that FOXO-TXNIP pathway play a role in the inhibition of the hepatocellular carcinoma growth by MK-801.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carrier Proteins/metabolism , Dizocilpine Maleate/pharmacology , Forkhead Transcription Factors/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Signal Transduction , Carcinoma, Hepatocellular/genetics , Carrier Proteins/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism
19.
Biochem Biophys Res Commun ; 425(4): 717-23, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22877751

ABSTRACT

Rare sugar D-psicose has cropped up as a non-toxic and effective compound to protect and preserve pancreatic ß-islets in the growing type 2 diabetes mellitus (T2DM) rats through the regulation of glucose and fat metabolism. The present study was undertaken to examine the effect of rare sugar D-psicose on the protection of pancreatic ß-islets using Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a T2DM model. Treated rats were fed with 5% D-psicose or 5% D-glucose supplemented drinking water, and only water in the control for 13 weeks. A non-diabetic Long-Evans Tokushima Otsuka (LETO), fed with water served as a counter control of OLETF. D-Psicose significantly attenuated progressive ß-islet fibrosis and preserved islets, evaluated by hematoxylin-eosin staining, Masson's trichrome staining and immunostainings of insulin and α-smooth muscle actin (SMA). D-Psicose significantly reduced increase in body weight and abdominal fat deposition. Oral glucose tolerance test (OGTT) showed reduced blood glucose levels suggesting the improvement of insulin resistance. All these data suggests that D-psicose protected and preserved pancreatic ß-islets through the maintenance of hyperglycemia and by the prevention of fat accumulation in OLETF rats.


Subject(s)
Cytoprotection , Diabetes Mellitus, Type 2/drug therapy , Fructose/administration & dosage , Insulin Resistance , Insulin-Secreting Cells/drug effects , Obesity/drug therapy , Abdominal Fat/drug effects , Abdominal Fat/pathology , Actins/metabolism , Adipokines/blood , Animals , Body Mass Index , Body Weight/drug effects , Eating/drug effects , Fibrosis , Glucose/metabolism , Glucose Tolerance Test , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Obesity/blood , Rats , Rats, Inbred OLETF
20.
Nutr Res ; 32(2): 116-23, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22348460

ABSTRACT

Oxidative stress modulates the osteoclast differentiation via redox systems, and thioredoxin 1 (Trx) promotes the osteoclast formation by regulating the activity of transcription factors. The function of Trx is known to be regulated by its binding partner, thioredoxin-interacting protein (TXNIP). We previously reported that the expression of TXNIP gene is strongly induced by a rare sugar D-allose. In this study, we tested the hypothesis that D-allose could inhibit the osteoclast differentiation by regulating the Trx function. We used a murine Raw264 cell line that differentiates to the osteoclast by the receptor activator of nuclear factor-κB ligand (RANKL) treatment. The effect of sugars was evaluated by tartrate-resistant acid phosphatase staining. The expression and localization of TXNIP and Trx protein were examined by Western blotting and immunohistochemisty. The activity of the nuclear factor-κB, nuclear factor of activated T cells, and activator protein 1 transcription factors was measured by the luciferase reporter assay. The addition of D-allose (25 mmol/L) inhibited the osteoclast differentiation down to 9.53% ± 1.27% of a receptor activator of nuclear factor-κB ligand-only treatment. During the osteoclast differentiation, a significant increase of TNXIP was observed by D-allose treatment. The immunohistochemical analysis showed that both Trx and TXNIP existed in the nucleus in preosteoclasts and osteoclasts. Overexpression of TXNIP by plasmid transfection also inhibited the osteoclast formation, indicating the functional importance of TXNIP for the osteoclast differentiation. Transcriptional activity of the activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells, known to be modulated by Trx, were inhibited by D-allose. In conclusion, our data indicate that D-allose is a strong inhibitor of the osteoclast differentiation, and this effect could be caused by TXNIP induction and a resulting inhibition of the Trx function.


Subject(s)
Carrier Proteins/metabolism , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Glucose/pharmacology , Osteoclasts/drug effects , Thioredoxins/metabolism , Transcription, Genetic/drug effects , Animals , Carrier Proteins/genetics , Cell Line , Cell Nucleus , Mice , Osteoclasts/physiology , Oxidative Stress/physiology , Plasmids , RANK Ligand/metabolism , RANK Ligand/pharmacology , Staining and Labeling , Thioredoxins/genetics , Transcription Factors/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...