Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(23): 7063-7068, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805318

ABSTRACT

High-entropy alloy (HEA) nanoparticles (NPs) have attracted attention in several fields because of their fascinating properties. The high mechanical strength, good thermal stability, and superior corrosion resistance of HEAs, which are derived from their high configurational entropy, are attractive features. Herein, we investigated the thermal stability of FeCoNiCuPd HEA NPs on reduced graphene oxide via in situ transmission electron microscopy observations at elevated temperatures. The HEA NPs maintained their structure, size, and composition at 700 °C, and their size gradually decreased accompanied by the preferential sublimation of Cu. On the contrary, the deterioration of the monometallic Pd NPs begins at temperatures greater than 700 °C according to Ostwald ripening, which involves the migration of adatoms or mobile molecular species. Theoretical calculations revealed that the detachment of adatoms from clusters (i.e., the first step of Ostwald ripening) was suppressed in the case of HEA NPs because of the high-configuration-entropy effect.

2.
JACS Au ; 3(8): 2131-2143, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37654591

ABSTRACT

High-entropy alloy (HEA) nanoparticles (NPs) have attracted significant attention as promising catalysts owing to the various unique synergistic effects originating from the nanometer-scale, near-equimolar mixing of five or more components to produce single-phase solid solutions. However, the study of sub-nanometer HEA clusters having sizes of less than 1 nm remains incomplete despite the possibility of novel functions related to borderline molecular states with discrete quantum energy levels. The present work demonstrates the synthesis of CeO2 nanorods (CeO2-NRs) on which sub-nanometer CoNiCuZnPd HEA clusters were formed with the aid of a pronounced hydrogen spillover effect on readily reducible CeO2 (110) facets. The CoNiCuZnPd HEA sub-nanoclusters exhibited higher activity during the reduction of NO by H2 even at low temperatures compared with the corresponding monometallic catalysts. These clusters also showed a unique structural reversibility in response to repeated exposure to oxidative/reductive conditions, based on the sacrificial oxidation of the non-noble metals. Both experimental and theoretical analyses established that multielement mixing in quantum-sized regions endowed the HEA clusters with entirely novel catalytic properties.

3.
Nat Commun ; 12(1): 3884, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34162865

ABSTRACT

High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements.

4.
Environ Sci Pollut Res Int ; 27(11): 11809-11829, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31975005

ABSTRACT

This work is scrutinizing the development of metallized biochar as a low-cost bio-sorbent for low temperature CO2 capture with high adsorption capacity. Accordingly, single-step pyrolysis process was carried out in order to synthesize biochar from rambutan peel (RP) at different temperatures. The biochar product was then subjected to wet impregnation with several magnesium salts including magnesium nitrate, magnesium sulphate, magnesium chloride and magnesium acetate which then subsequently heat-treated with N2. The impregnation of magnesium into the biochar structure improved the CO2 capture performance in the sequence of magnesium nitrate > magnesium sulphate > magnesium chloride > magnesium acetate. There is an enhancement in CO2 adsorption capacity of metallized biochar (76.80 mg g-1) compare with pristine biochar (68.74 mg g-1). It can be justified by the synergetic influences of physicochemical characteristics. Gas selectivity study verified the high affinity of biochar for CO2 capture compared with other gases such as air, methane, and nitrogen. This investigation also revealed a stable performance of the metallized biochar in 25 cycles of CO2 adsorption and desorption. Avrami kinetic model accurately predicted the dynamic CO2 adsorption performance for pristine and metallized biochar.


Subject(s)
Carbon Dioxide , Charcoal , Acetates , Adsorption , Magnesium Compounds , Metals
5.
Nat Commun ; 9(1): 2060, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802253

ABSTRACT

Nanoporous gold (NPG) with sponge-like structures has been studied by atomic-scale and microsecond-resolution environmental transmission electron microscopy (ETEM) combined with ab initio energy calculations. Peculiar surface dynamics were found in the reaction environment for the oxidation of CO at room temperature, involving residual silver in the NPG leaves as well as gold and oxygen atoms, especially on {110} facets. The NPG is thus classified as a novel self-activating catalyst. The essential structure unit for catalytic activity was identified as Au-AgO surface clusters, implying that the NPG is regarded as a nano-structured silver oxide catalyst supported on the matrix of NPG, or an inverse catalyst of a supported gold nanoparticulate (AuNP) catalyst. Hence, the catalytically active structure in the gold catalysts (supported AuNP and NPG catalysts) can now be experimentally unified in low-temperature CO oxidation, a step forward towards elucidating the fascinating catalysis mechanism of gold.

6.
Ultramicroscopy ; 181: 27-41, 2017 10.
Article in English | MEDLINE | ID: mdl-28482229

ABSTRACT

An apparatus is developed for transmission electron microscopy (TEM) to acquire image and spectral data, such as TEM images, electron holograms, and electron energy loss spectra, synchronized with the measurement of the dynamic response of a specimen under an applied alternating current (AC) electric potential (voltage, denoted VAC). From a VAC of frequency f, a shutter pulse signal is generated to open and close a pre-specimen shutter in a base TEM apparatus. A pulse is generated per VAC cycle from the targeted phase Φ to Φ +∆Φ with phase width ∆Φ (∆Φ <2π). ∆Φ corresponds to the temporal pulse width τ (τ < 1/f) of an electron beam; i.e., ∆Φ =2πfτ. Because of the high sensitivity of the TEM camera used in this study, the images and spectra that are acquired at the same target phase are integrated by means of stroboscopic illumination to obtain the final phase-locked images and spectra with sufficiently small S/N ratio. Phase-locked (strobe) images and/or spectra are obtained for model specimens of polycrystalline aluminum and an all-solid-state lithium ion battery (LIB). In the phase-locked TEM conditions, f ranges from 1Hz to about 40kHz and ∆Φ from 2π/80 to π. VAC ranges from 2mV to 1V depending on observation conditions. The quality of phase-locked strobe images can be improved markedly using a phase-locked strobe electron beam. Under specific conditions, the spatial resolution in images is better than 0.12nm, even though the spatial resolution generally depends on VAC, f, the base TEM, and the conductivity of the specimen. For the model specimens, it is shown that electrochemical impedance spectroscopy and cyclic voltammetry can be performed in a TEM apparatus, and could potentially be synchronized with phase-locked (strobe) imaging and spectroscopy. Severe electron irradiation damage is detected during phase-locked (strobe) electron holography of the model LIB.

7.
Microscopy (Oxf) ; 65(6): 522-526, 2016 12.
Article in English | MEDLINE | ID: mdl-27920166

ABSTRACT

It is known that samples become contaminated in CO gas of high pressure unless care is taken with the gas supply line to an environmental transmission electron microscope. This technical note reveals the heterogeneous formation process of contamination in situ on a nanoparticulate catalyst sample. It is shown that the surface of metal nanoparticles is preferentially contaminated, while the surface of metal oxide supports remains uncontaminated. It is also demonstrated that the contamination is suppressed by introducing a gas purifier in a gas supply line.

SELECTION OF CITATIONS
SEARCH DETAIL
...