Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 14(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38541737

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) plays a pivotal role in various physiological processes within mammalian cells, including energy metabolism, redox homeostasis, and genetic regulation. In the majority of mammalian cellular contexts, NAD+ biosynthesis primarily relies on vitamin B3, including nicotinamide (NAM) and nicotinic acid (NA). The concept of NAD+ augmentation therapy has recently emerged as a promising strategy to mitigate aging-associated phenomena, termed rejuvenation. Despite the involvement of diverse enzymatic cascades in NAD+ biosynthesis, certain cellular environments exhibit deficiencies in specific enzymes, suggesting cell type-dependent variability in optimal NAD+ precursor selection. However, the optimization of NAD+ precursors for topical formulations has received scant attention thus far. In the present investigation, we sought to delineate the most efficacious precursor for augmenting NAD+ levels in human skin keratinocytes. Remarkably, NA supplementation led to a significant 1.3-fold elevation in intracellular NAD+ levels, even in the presence of nicotinamide phosphoribosyltransferase inhibition by FK866. Additionally, NA mononucleotide demonstrated a 1.5-fold increase (but not significant) in NAD+ levels following 100 µM application. Conversely, NAM and its derivatives failed to elicit a NAD+ response in keratinocytes. Notably, NA supplementation elicited up-regulation of mitochondrial superoxide dismutase (SOD2) and sirtuin 3 (SIRT3), indicative of its beneficial impact on mitochondrial function. Furthermore, NA mitigated rotenone-induced mitochondrial reactive oxygen species (ROS) accumulation. Collectively, these findings advocate for the potential utility of NA in topical applications aimed at skin rejuvenation.

2.
Biochimie ; 192: 13-21, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34536557

ABSTRACT

Tyrosinase (TYR) is a key enzyme for melanin production. We previously showed that hinokitiol, a naturally occurring seven-membered ring terpenoid, potently inhibits human TYR activity. Interestingly, hinokitiol was recently reported to decrease expression of TYR and microphthalmia-associated transcription factor (MITF), which is a main transcription factor of the TYR gene, in murine melanoma cells. However, the mechanisms by which hinokitiol decreases the intracellular levels of TYR and MITF have not been fully elucidated. Here, we investigated the underlying mechanisms of the decreases using cultured human melanoma cells. As a result, hinokitiol treatment decreased TYR protein level in a time- and dose-dependent manner in G361 human melanoma cells, while MITF protein level was decreased only at higher concentrations after 3 days treatment. Notably, the mRNA levels of TYR and MITF were slightly increased by hinokitiol treatment. Therefore, we focused on the degradation of TYR and MITF in endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Importantly, co-treatment of ERAD inhibitor with hinokitiol restored the protein levels of TYR and MITF to approximately 30% and 20% of total those in untreated control cells, respectively. Hinokitiol affected the ER homeostasis as well as degradation of TYR and MITF in two human melanoma cell lines, G361 and HT-144, but the changes of ER-stress markers under the hinokitiol treatment were different in the two human melanoma cell lines. Taken together, these observations indicate that hinokitiol may induce ER stress and trigger the degradation of unfolded newly synthesizing TYR and MITF via the ERAD pathway.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/drug effects , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/metabolism , Monoterpenes/pharmacology , Neoplasm Proteins/metabolism , Tropolone/analogs & derivatives , Cell Line, Tumor , Humans , Melanoma/drug therapy , Melanoma/pathology , Tropolone/pharmacology
3.
Arch Biochem Biophys ; 711: 109029, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34517011

ABSTRACT

Because of the critical roles of Toll-like receptors (TLRs) and receptor for advanced glycation end-products (RAGE) in the pathophysiology of various acute and chronic inflammatory diseases, continuous efforts have been made to discover novel therapeutic inhibitors of TLRs and RAGE to treat inflammatory disorders. A recent study by our group has demonstrated that trimebutine, a spasmolytic drug, suppresses the high mobility group box 1‒RAGE signaling that is associated with triggering proinflammatory signaling pathways in macrophages. Our present work showed that trimebutine suppresses interleukin-6 (IL-6) production in lipopolysaccharide (LPS, a stimulant of TLR4)-stimulated macrophages of RAGE-knockout mice. In addition, trimebutine suppresses the LPS-induced production of various proinflammatory cytokines and chemokines in mouse macrophage-like RAW264.7 cells. Importantly, trimebutine suppresses IL-6 production induced by TLR2-and TLR7/8/9 stimulants. Furthermore, trimebutine greatly reduces mortality in a mouse model of LPS-induced sepsis. Studies exploring the action mechanism of trimebutine revealed that it inhibits the LPS-induced activation of IL-1 receptor-associated kinase 1 (IRAK1), and the subsequent activations of extracellular signal-related kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and nuclear factor-κB (NF-κB). These findings suggest that trimebutine exerts anti-inflammatory effects on TLR signaling by downregulating IRAK1‒ERK1/2‒JNK pathway and NF-κB activity, thereby indicating the therapeutic potential of trimebutine in inflammatory diseases. Therefore, trimebutine can be a novel anti-inflammatory drug-repositioning candidate and may provide an important scaffold for designing more effective dual anti-inflammatory drugs that target TLR/RAGE signaling.


Subject(s)
Anti-Inflammatory Agents/pharmacology , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Toll-Like Receptors/metabolism , Trimebutine/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Chemokines/metabolism , Female , Interleukin-6/metabolism , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells , Receptor for Advanced Glycation End Products/deficiency , Receptor for Advanced Glycation End Products/genetics , Sepsis/chemically induced , Sepsis/drug therapy , Trimebutine/therapeutic use
4.
Biochem Biophys Res Commun ; 566: 1-8, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34111666

ABSTRACT

Receptor for advanced glycation end-products (RAGE) and Toll-like receptors (TLRs) are potential therapeutic targets in the treatment of acute and chronic inflammatory diseases. We previously reported that trimebutine, a spasmolytic drug, suppresses RAGE pro-inflammatory signaling pathway in macrophages. The aim of this study was to convert trimebutine to a new small molecule using in silico 3D pharmacophore similarity search, and dissect the mechanistic anti-inflammatory basis. Of note, a unique 3-styrylchromone (3SC), 7-methoxy-3-trimethoxy-SC (7M3TMSC), converted from trimebutine 3D pharmacophore potently suppressed both high mobility group box 1-RAGE and lipopolysaccharide-TLR4 signaling pathways in macrophage-like RAW264.7 cells. More importantly, 7M3TMSC inhibited the phosphorylation of extracellular signaling-regulated kinase 1 and 2 (ERK1/2) and downregulated the production of cytokines, such as interleukin-6. Furthermore, 3D pharmacophore-activity relationship analyses revealed that the hydrogen bond acceptors of the trimethoxy groups in a 3-styryl moiety and the 7-methoxy-group in a chromone moiety in this compound are significant in the dual anti-inflammatory activity. Thus, 7M3TMSC may provide an important scaffold for the development of a new type of anti-inflammatory dual effective drugs targeting RAGE/TLR4-ERK1/2 signaling.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chromones/pharmacology , Receptor for Advanced Glycation End Products/metabolism , Toll-Like Receptor 4/metabolism , Trimebutine/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Chromones/chemistry , HMGB1 Protein/metabolism , Humans , Mice , RAW 264.7 Cells , Signal Transduction/drug effects , Trimebutine/chemistry
5.
Medicines (Basel) ; 8(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805209

ABSTRACT

Background: High mobility group box 1 (HMGB1)-receptor for advanced glycation endo-products (RAGE) axis serves as a key player in linking inflammation and carcinogenesis. Recently, papaverine was revealed to suppress the HMGB1-RAGE inflammatory signaling pathway and cancer cell proliferation. Therefore, a dual suppressor targeting this axis is expected to become a new type of therapeutic agent to treat cancer. Methods: Papaverine 3D pharmacophore mimetic compounds were selected by the LigandScout software from our in-house, anti-cancer chemical library and assessed for their anti-inflammatory activities by a HMGB1-RAGE-mediated interleukin-6 production assay using macrophage-like RAW264.7 cells. Molecular-biological analyses, such as Western blotting, were performed to clarify the mechanism of action. Results: A unique 6-methoxy-3-hydroxy-styrylchromone was found to possess potent anti-inflammatory and anti-cancer activities via the suppression of the HMGB1-RAGE-extracellular signal-regulated kinase 1/2 signaling pathway. Furthermore, the 3D pharmacophore-activity relationship analyses revealed that the hydroxyl group at the C4' position of the benzene ring in a 3-styryl moiety was significant in its dual suppressive effects. Conclusions: These findings indicated that this compound may provide a valuable scaffold for the development of a new type of anti-cancer drug possessing anti-inflammatory activity and as a tool for understanding the link between inflammation and carcinogenesis.

6.
Biochem Biophys Res Commun ; 533(4): 1155-1161, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33041002

ABSTRACT

We previously identified papaverine as an inhibitor of receptor for advanced glycation end-products (RAGE) and showed its suppressive effect on high mobility group box 1 (HMGB1)-mediated responses to inflammation. Here, we found trimebutine to be a 3D pharmacophore mimetics of papaverine. Trimebutine was revealed to have more potent suppressive effects on HMGB1-induced production of pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α in macrophage-like RAW264.7 cells and mouse bone marrow primarily differentiated macrophages than did papaverine. However, the inhibitory effect of trimebutine on the interaction of HMGB1 and RAGE was weaker than that of papaverine. Importantly, mechanism-of-action analyses revealed that trimebutine strongly inhibited the activation of RAGE downstream inflammatory signaling pathways, especially the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), which are mediator/effector kinases recruited to the intracellular domain of RAGE. Consequently, the activation of Jun amino terminal kinase, which is an important effector kinase for the up-regulation of pro-inflammatory cytokines, was inhibited. Taken together, these results suggest that trimebutine may exert its suppressive effect on the HMGB1-RAGE inflammatory signal pathways by strongly blocking the recruitment of ERK1/2 to the intracellular tail domain of RAGE in addition to its weak inhibition of the extracellular interaction of HMGB1 with RAGE. Thus, trimebutine may provide a unique scaffold for the development of novel dual inhibitors of RAGE for inflammatory diseases.


Subject(s)
HMGB1 Protein/metabolism , MAP Kinase Signaling System/drug effects , Receptor for Advanced Glycation End Products/metabolism , Trimebutine/pharmacology , Animals , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Janus Kinases/antagonists & inhibitors , Macrophages , Mice , Papaverine/chemistry , Papaverine/pharmacology , RAW 264.7 Cells , Trimebutine/chemistry , Tumor Necrosis Factor-alpha/metabolism
7.
Bioorg Med Chem Lett ; 27(13): 2868-2872, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28495084

ABSTRACT

So far, many inhibitors of tyrosinase have been discovered for cosmetic and clinical agents. However, the molecular mechanisms underlying the inhibition in the active site of tyrosinase have not been well understood. To explore this problem, we examined here the inhibitory effects of 4'-hydroxylation and methoxylation of phenylbenzoic acid (PBA) isomers, which have a unique scaffold to inhibit mushroom tyrosinase. The inhibitory effect of 3-PBA, which has the most potent inhibitory activity among the isomers, was slightly decreased by 4'-hydroxylation and further decreased by 4'-methoxylation against mushroom tyrosinase. Surprisingly, 4'-hydroxylation but not methoxylation of 2-PBA appeared inhibitory activity. On the other hand, both 4'-hydroxylation and methoxylation of 4-PBA increased the inhibitory activity against mushroom tyrosinase. In silico docking analyses using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid or 4'-hydroxyl group of PBA derivatives could chelate with cupric ions in the active site of mushroom tyrosinase, and that the interactions of Asn260 and Phe264 in the active site with the adequate-angled biphenyl group are involved in the inhibitory activities of the modified PBAs, by parallel and T-shaped π-π interactions, respectively. Furthermore, Arg268 could fix the angle of the aromatic ring of Phe264, and Val248 is supposed to interact with the inhibitors as a hydrophobic manner. These results may enhance the structural insight into mushroom tyrosinase for the creation of novel tyrosinase inhibitors.


Subject(s)
Agaricales/enzymology , Biphenyl Compounds/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Catalytic Domain/drug effects , Dose-Response Relationship, Drug , Molecular Structure , Monophenol Monooxygenase/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem ; 24(18): 4509-4515, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27507110

ABSTRACT

Tyrosinase is known as the key enzyme for melanin biosynthesis, which is effective in preventing skin injury by ultra violet (UV). In past decades, tyrosinase has been well studied in the field of cosmetics, medicine, agriculture and environmental sciences, and a lot of tyrosinase inhibitors have been developed for their needs. Here, we searched for new types of tyrosinase inhibitors and found phenylbenzoic acid (PBA) as a unique scaffold. Among three isomers of PBA, 3-phenylbenzoic acid (3-PBA) was revealed to be the most potent inhibitor against mushroom tyrosinase (IC50=6.97µM, monophenolase activity; IC50=36.3µM, diphenolase activity). The kinetic studies suggested that the apparent inhibition modes for the monophenolase and diphenolase activities were noncompetitive and mixed type inhibition, respectively. Analyses by in silico docking studies using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid group of the 3-PBA could adequately bind to two cupric ions in the tyrosinase. To prove this hypothesis, we examined the effect of modification of the carboxylic acid group of the 3-PBA on its inhibitory activity. As expected, the esterification abrogated the inhibitory activity. These observations suggest that 3-PBA is a useful lead compound for the generation of novel tyrosinase inhibitors and provides a new insight into the molecular basis of tyrosinase catalytic mechanisms.


Subject(s)
Benzoates/chemistry , Benzoates/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Animals , Humans , Inhibitory Concentration 50 , Kinetics , Models, Molecular , Molecular Structure , Monophenol Monooxygenase/chemistry , Oxidation-Reduction
9.
Bioorg Med Chem ; 22(21): 6193-200, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25288494

ABSTRACT

Tyrosinase inhibitors have become increasingly critical agents in cosmetic, agricultural, and medicinal products. Although a large number of tyrosinase inhibitors have been reported, almost all the inhibitors were unfortunately evaluated by using commercial available mushroom tyrosinase. Here, we examined the inhibitory effects of three isomers of thujaplicin (α, ß, and γ) on human tyrosinase and analyzed their binding modes using homology model and docking studies. As the results, γ-thujaplicin was found to strongly inhibit human tyrosinase with the IC50 of 1.15 µM, extremely superior to a well-known tyrosinase inhibitor kojic acid (IC50 = 571.17 µM). MM-GB/SA binding free energy decomposition analyses suggested that the potent inhibitory activity of γ-thujaplicin may be due to the interactions with His367, Ile368, and Val377 (hot spot amino acid residues) in human tyrosinase. Furthermore, the binding mode of α-thujaplicin indicated that Val377 and Ser380 may cause van der Waals clashes with the isopropyl group of α-thujaplicin. These results provide a novel structural insight into the hot spot of human tyrosinase for the specific binding of γ-thujaplicin and a way to optimize not only thujaplicins but also other lead compounds as specific inhibitors for human tyrosinase in a rational manner.


Subject(s)
Enzyme Inhibitors/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Monoterpenes/pharmacology , Tropolone/analogs & derivatives , Amino Acid Sequence , Humans , Molecular Docking Simulation , Molecular Sequence Data , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/metabolism , Sequence Alignment , Structure-Activity Relationship , Tropolone/pharmacology
10.
Bioorg Med Chem ; 18(22): 8112-8, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20947360

ABSTRACT

Tyrosinase inhibitors are important agents for cosmetic products. We examined here the inhibitory effects of three isomers of thujaplicins (α, ß and γ) on mushroom tyrosinase and analyzed their binding modes using a homology model from the crystal structure of Streptomyces castaneoglobisporus tyrosinase (PDB ID: 1wx2). All the thujaplicins were found to be competitive inhibitors and γ-thujaplicin has the most potent inhibitory activity (IC(50)=0.07µM). It is noted that there are good correlations between their observed IC(50) values and their binding free energies calculated by MM-GB/SA. The binding modes of thujaplicins were predicted to be similar to that of Tyr98 of caddie protein (ORF378), which was co-crystallized with S. castaneoglobisporus tyrosinase. Furthermore, free energy decomposition analysis indicated that the potent inhibitory activity of γ-thujaplicin is due to the interactions with His242, Val243 and Pro257 (hot spot amino acid residues) at the active site of tyrosinase. These results provide a novel structural insight into the hot spot of mushroom tyrosinase for the specific binding of γ-thujaplicin.


Subject(s)
Agaricales/enzymology , Amino Acids/chemistry , Monophenol Monooxygenase/chemistry , Monoterpenes/chemistry , Tropolone/analogs & derivatives , Amino Acid Sequence , Bacterial Proteins/chemistry , Binding Sites , Binding, Competitive , Catalytic Domain , Crystallography, X-Ray , Isomerism , Kinetics , Molecular Sequence Data , Monophenol Monooxygenase/metabolism , Monoterpenes/pharmacology , Protein Binding , Sequence Alignment , Streptomyces/enzymology , Tropolone/chemistry , Tropolone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...