Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sustain Sci ; 13(1): 219-233, 2018.
Article in English | MEDLINE | ID: mdl-30147780

ABSTRACT

Many Japanese and European landscapes harbor biocultural diversity that has been shaped by human agency over centuries. However, these landscapes are threatened by widespread land abandonment, land-use changes, and urbanization. The aim of this study is to use a "solution scanning" method to identify place-based food networks in Europe and Japan that reinforce linkages between biological and cultural diversity in landscapes. In our analysis of 26 European and 13 Japanese cases, we find that place-based food networks are typically located in heterogeneous landscapes, are driven by civil society (and less by markets), and act at a local scale. Regional identity is the most frequently addressed societal issue. Scenery, rural tourism, and nature conservation are more important motivations in Europe, and physical well-being and revitalization of local economies are more relevant in Japan. European models are typically associated with achieving biodiversity conservation and socio-cultural tradition outcomes, and Japanese models more with public health and nutrition outcomes. We discuss the potential for transfer of approaches from Japan to Europe (e.g., models that tackle the aging of rural societies), and from Europe to Japan (e.g., models that build explicit connections between food production and biodiversity conservation). We conclude with a list of recommended policy measures, e.g., the creation of a flexible legal framework that protects the interests of and reduces political constraints for collaborative efforts to biocultural diversity in landscapes.

2.
Ann Bot ; 118(2): 239-47, 2016 08.
Article in English | MEDLINE | ID: mdl-27296134

ABSTRACT

BACKGROUND AND AIMS: Leaf nitrogen distribution in the plant canopy is an important determinant for canopy photosynthesis. Although the gradient of leaf nitrogen is formed along light gradients in the canopy, its quantitative variations among species and environmental responses remain unknown. Here, we conducted a global meta-analysis of leaf nitrogen distribution in plant canopies. METHODS: We collected data on the nitrogen distribution and environmental variables from 393 plant canopies (100, 241 and 52 canopies for wheat, other herbaceous and woody species, respectively). KEY RESULTS: The trends were clearly different between wheat and other species; the photosynthetic nitrogen distribution coefficient (Kb) was mainly determined by leaf area index (LAI) in wheat, whereas it was correlated with the light extinction coefficient (KL) and LAI in other species. Some other variables were also found to influence Kb We present the best equations for Kb as a function of environmental variables and canopy characteristics. As a more simple function, Kb = 0·5KL can be used for canopies of species other than wheat. Sensitivity analyses using a terrestrial carbon flux model showed that gross primary production tended to be more sensitive to the Kb value especially when nitrogen content of the uppermost leaf was fixed. CONCLUSION: Our results reveal that nitrogen distribution is mainly driven by the vertical light gradient but other factors such as LAI also have significant effects. Our equations contribute to an improvement in the projection of plant productivity and cycling of carbon and nitrogen in terrestrial ecosystems.


Subject(s)
Carbon/metabolism , Models, Biological , Nitrogen/metabolism , Photosynthesis/physiology , Triticum/physiology , Light , Photosynthesis/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Triticum/radiation effects
3.
Oecologia ; 181(4): 1069-82, 2016 08.
Article in English | MEDLINE | ID: mdl-27139425

ABSTRACT

High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.


Subject(s)
DNA Damage , Pyrimidine Dimers , DNA Repair , Plant Leaves/radiation effects , Ultraviolet Rays
4.
Ecol Lett ; 18(12): 1406-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26415616

ABSTRACT

Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies.


Subject(s)
Biodiversity , Phenotype , Plant Physiological Phenomena , Species Specificity
5.
New Phytol ; 204(4): 913-23, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25103246

ABSTRACT

Species niches are expected to differ between different functional groups and between species with different functional traits. However, it is still unclear how functional traits contribute to niche separation between species coexisting in a community and between sites along environmental gradients. We studied seasonal changes in light partitioning among coexisting species belonging to different functional groups in moorland plant communities at different altitudes. We estimated the lifetime light absorption per unit invested leaf biomass (ΦLleafmass) as a measure of the benefit/cost ratio of light acquisition. Evergreen species absorbed more light in spring, whereas deciduous species absorbed more light in summer. A similar tradeoff was also found between short and tall species within each functional group. As a result, evergreen and shorter species had comparable ΦLleafmass values to those of deciduous and taller species. Evergreen species had higher ΦLleafmass at higher altitudes relative to deciduous species, suggesting that evergreen habit is more advantageous for the lifetime light interception at higher altitudes. Our results demonstrate that phenological tradeoffs for light partitioning can contribute to the coexistence of species with different functional traits. Our results also reveal that the most advantageous traits differ depending on environment.


Subject(s)
Ecosystem , Plant Leaves/physiology , Plant Physiological Phenomena , Altitude , Japan , Light , Models, Biological , Quantitative Trait, Heritable , Seasons
6.
Physiol Plant ; 146(4): 404-12, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22486715

ABSTRACT

The limiting step of photosynthesis changes depending on CO(2) concentration and, in theory, photosynthetic nitrogen use efficiency at a respective CO(2) concentration is maximized if nitrogen is redistributed from non-limiting to limiting processes. It has been shown that some plants increase the capacity of ribulose-1,5-bisphoshate (RuBP) regeneration (evaluated as J(max) ) relative to the RuBP carboxylation capacity (evaluated as V(cmax) ) at elevated CO(2) , which is in accord with the theory. However, there is no study that tests whether this change is accompanied by redistribution of nitrogen in the photosynthetic apparatus. We raised a perennial plant, Polygonum sachalinense, at two nutrient availabilities under two CO(2) concentrations. The J(max) to V(cmax) ratio significantly changed with CO(2) increment but the nitrogen allocation among the photosynthetic apparatus did not respond to growth CO(2) . Enzymes involved in RuBP regeneration might be more activated at elevated CO(2) , leading to the higher J(max) to V(cmax) ratio. Our result suggests that nitrogen partitioning is not responsive to elevated CO(2) even in species that alters the balance between RuBP regeneration and carboxylation. Nitrogen partitioning seems to be conservative against changes in growth CO(2) concentration.


Subject(s)
Carbon Dioxide/metabolism , Nitrogen/metabolism , Photosynthesis , Polygonum/growth & development , Ribulosephosphates/metabolism , Electron Transport , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Fructose-Bisphosphatase/metabolism , Linear Models , Plant Leaves/metabolism , Polygonum/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
7.
Oecologia ; 164(3): 591-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20552228

ABSTRACT

Competition for light is one of the most essential mechanisms affecting species composition. It has been suggested that similar light acquisition efficiency (Φ(mass), absorbed photon flux per unit aboveground mass) may contribute to species coexistence in multi-species communities. On the other hand, it is known that traits related with light acquisition vary among functional groups. We studied whether Φ(mass) was similar among species with different functional groups coexisting in moorland communities. We conducted stratified clipping in midsummer when the stand biomass reached a maximum. Light partitioning among species was estimated using a model accounting for both direct and diffuse light. Evergreen species were found to have a significantly lower Φ(mass) than deciduous species, which resulted from their lower absorbed photon flux per unit leaf area and lower specific leaf area. Shrubs had a smaller leaf mass fraction, but their Φ(mass) was not lower than that of herbs because they had a higher leaf position due to the presence of wintering stems. Species with vertical leaves had a higher Φ(mass) than those with horizontal leaves despite vertical leaves being a decided disadvantage in terms of light absorption. This higher Φ(mass) was achieved by a greater leaf height in species with vertical leaves. Our results clearly demonstrate that light acquisition efficiency was different among the functional groups. However, the trend observed is not necessarily the same as that expected based on prior knowledge, suggesting that disadvantages in some traits for light acquisition efficiency are partly compensated for by other traits.


Subject(s)
Ecosystem , Plants/radiation effects , Sunlight , Wetlands , Photons , Plant Development , Population Density , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...