Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 196(7): 660, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916758

ABSTRACT

Riverine phytoplankton takes up phosphate, dissolved silicate, and nitrate. We investigated which nutrients are depleted during a Lagrangian sampling in the free-flowing part of the River Elbe in 2023. As part of this study, we tested the hypotheses that nutrient depletion might be caused by (1) above-average phytoplankton biomass or by (2) decreased nutrient load of the river during previous years. Phytoplankton biomass increased up to 350 km in rivers and stopped increasing exactly when soluble reactive phosphorus had been completely consumed, and molar carbon to phosphorus ratios of seston indicated the beginning phosphorus limitation. The concentrations of dissolved silicate and nitrate dropped below the detection limit as well. In contrast to the results from eight previous longitudinal samplings taken in 2018-2022, nitrate exhaustion was detected for the first time in 2023 within the transect. This was caused neither by an above-average phytoplankton biomass nor by a declined overall nutrient load of the river in 2018-2023. Instead, denitrification appears to be the most plausible explanation for the downstream decrease of nitrate and the loss of total nitrogen which was supported by enrichment of nitrate stable isotopes and a decreasing ratio of nitrate 15N/18O.


Subject(s)
Environmental Monitoring , Nitrates , Phosphorus , Phytoplankton , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Nitrates/analysis , Biomass , Nitrogen/analysis , Phosphates/analysis , Nutrients/analysis , Silicates/analysis
3.
Sci Total Environ ; 890: 164421, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37244620

ABSTRACT

Nutrient and carbon dynamics within the river-estuary-coastal water systems are key processes in understanding the flux of matter from the terrestrial environment to the ocean. Here, we analysed those dynamics by following a sampling approach based on the travel time of water and an advanced calculation of nutrient fluxes in the tidal part. We started with a nearly Lagrangian sampling of the river (River Elbe, Germany; 580 km within 8 days). After a subsequent investigation of the estuary, we followed the plume of the river by raster sampling the German Bight (North Sea) using three ships simultaneously. In the river, we detected intensive longitudinal growth of phytoplankton connected with high oxygen saturation and pH values and an undersaturation of CO2, whereas concentrations of dissolved nutrients declined. In the estuary, the Elbe shifted from an autotrophic to a heterotrophic system: Phytoplankton died off upstream of the salinity gradient, causing minima in oxygen saturation and pH, supersaturation of CO2, and a release of nutrients. In the shelf region, phytoplankton and nutrient concentrations were low, oxygen was close to saturation, and pH was within a typical marine range. Over all sections, oxygen saturation was positively related to pH and negatively to pCO2. Corresponding to the significant particulated nutrient flux via phytoplankton, flux rates of dissolved nutrients from river into estuary were low and determined by depleted concentrations. In contrast, fluxes from the estuary to the coastal waters were higher and the pattern was determined by tidal current. Overall, the approach is appropriate to better understand land-ocean fluxes, particularly to illuminate the importance of these fluxes under different seasonal and hydrological conditions, including flood and drought events.


Subject(s)
Estuaries , Rivers , Carbon/analysis , Carbon Dioxide/analysis , Phytoplankton , Water/analysis , Nutrients/analysis , Environmental Monitoring
4.
Water Res ; 232: 119672, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36739660

ABSTRACT

The molecular composition of dissolved organic matter (DOM) is of relevance for global carbon cycling and important for drinking water processing also. The detection of variation of DOM composition as function of time and space from a methodological viewpoint is essential to observe DOM processing and was addressed so far. High resolution concerning DOM quality was achieved with Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). However almost none of the existing FTICR-MS data sets were evaluated addressing the fate of single mass features / molecular formulas (MFs) abundance during experiments. In contrast to former studies we analyze the function of MF abundance of time and space for such MFs which are present in all samples and which were formerly claimed as recalcitrant in not all but a great number of studies. For the first time the reactivity of MFs was directly compared by their abundance differences using a simple equation, the relative intensity difference (δRI). Search strategies to find out the maximum δRI values are introduced. The corresponding MFs will be regarded as key MFs (KEY-MFs). In order to test this new approach data from a recent photo degradation experiment were combined with monitoring surveys conducted in two drinking water reservoirs. The δRI values varied over one order of magnitude (more than five-fold). MFs like C9H12O6 and C10H14O6 revealed high biogeochemical reactivity as photo products. Some of the KEY-MFs were identical with MFs identified as disinfection byproducts precursors in recent studies. Other KEY-MFs were oxygen-rich and relatively unsaturated (poly-phenol-like) and hence relevant to flocculation procedures.


Subject(s)
Dissolved Organic Matter , Drinking Water , Mass Spectrometry , Oxygen , Phenols
5.
Sci Total Environ ; 828: 154243, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35245548

ABSTRACT

On their way from inland to the ocean, flowing water bodies, their constituents and their biotic communities are exposed to complex transport and transformation processes. However, detailed process knowledge as revealed by Lagrangian measurements adjusted to travel time is rare in large rivers, in particular at hydrological extremes. To fill this gap, we investigated autotrophic processes, heterotrophic carbon utilization, and micropollutant concentrations applying a Lagrangian sampling design in a 600 km section of the River Elbe (Germany) at historically low discharge. Under base flow conditions, we expect the maximum intensity of instream processes and of point source impacts. Phytoplankton biomass and photosynthesis increased from upstream to downstream sites but maximum chlorophyll concentration was lower than at mean discharge. Concentrations of dissolved macronutrients decreased to almost complete phosphate depletion and low nitrate values. The longitudinal increase of bacterial abundance and production was less pronounced than in wetter years and bacterial community composition changed downstream. Molecular analyses revealed a longitudinal increase of many DOM components due to microbial production, whereas saturated lipid-like DOM, unsaturated aromatics and polyphenols, and some CHOS surfactants declined. In decomposition experiments, DOM components with high O/C ratios and high masses decreased whereas those with low O/C ratios, low masses, and high nitrogen content increased at all sites. Radiocarbon age analyses showed that DOC was relatively old (890-1870 years B.P.), whereas the mineralized fraction was much younger suggesting predominant oxidation of algal lysis products and exudates particularly at downstream sites. Micropollutants determining toxicity for algae (terbuthylazine, terbutryn, isoproturon and lenacil), hexachlorocyclohexanes and DDTs showed higher concentrations from the middle towards the downstream part but calculated toxicity was not negatively correlated to phytoplankton. Overall, autotrophic and heterotrophic process rates and micropollutant concentrations increased from up- to downstream reaches, but their magnitudes were not distinctly different to conditions at medium discharges.


Subject(s)
Droughts , Rivers , Autotrophic Processes , Dissolved Organic Matter , Phytoplankton
6.
Water Res ; 201: 117262, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34118650

ABSTRACT

Despite elaborate regulation of agricultural pesticides, their occurrence in non-target areas has been linked to adverse ecological effects on insects in several field investigations. Their quantitative role in contributing to the biodiversity crisis is, however, still not known. In a large-scale study across 101 sites of small lowland streams in Central Europe, Germany we revealed that 83% of agricultural streams did not meet the pesticide-related ecological targets. For the first time we identified that agricultural nonpoint-source pesticide pollution was the major driver in reducing vulnerable insect populations in aquatic invertebrate communities, exceeding the relevance of other anthropogenic stressors such as poor hydro-morphological structure and nutrients. We identified that the current authorisation of pesticides, which aims to prevent unacceptable adverse effects, underestimates the actual ecological risk as (i) measured pesticide concentrations exceeded current regulatory acceptable concentrations in 81% of the agricultural streams investigated, (ii) for several pesticides the inertia of the authorisation process impedes the incorporation of new scientific knowledge and (iii) existing thresholds of invertebrate toxicity drivers are not protective by a factor of 5.3 to 40. To provide adequate environmental quality objectives, the authorisation process needs to include monitoring-derived information on pesticide effects at the ecosystem level. Here, we derive such thresholds that ensure a protection of the invertebrate stream community.


Subject(s)
Pesticides , Water Pollutants, Chemical , Agriculture , Animals , Ecosystem , Environmental Monitoring , Europe , Germany , Insecta , Invertebrates , Pesticides/analysis , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Sci Total Environ ; 769: 144324, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33482551

ABSTRACT

Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.

8.
Environ Sci Technol ; 54(21): 13556-13565, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32966053

ABSTRACT

Dissolved organic matter plays an important role in aquatic ecosystems and poses a major problem for drinking water production. However, our understanding of DOM reactivity in natural systems is hampered by its complex molecular composition. Here, we used Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and data from two independent studies to disentangle DOM reactivity based on photochemical and microbial-induced transformations. Robust correlations of FT-ICR-MS peak intensities with chlorophyll a and solar irradiation were used to define 9 reactivity classes for 1277 common molecular formulas. Germany's largest drinking water reservoir was sampled for 1 year, and DOM processing in stratified surface waters could be attributed to photochemical transformations during summer months. Microbial DOM alterations could be distinguished based on correlation coefficients with chlorophyll a and often shared molecular features (elemental ratios and mass) with photoreactive compounds. In particular, many photoproducts and some microbial products were identified as potential precursors of disinfection byproducts. Molecular DOM features were used to further predict molecular reactivity for the remaining compounds in the data set based on a random forest model. Our method offers an expandable classification approach to integrate the reactivity of DOM from specific environments and link it to molecular properties and chemistry.


Subject(s)
Drinking Water , Ecosystem , Chlorophyll A , Fresh Water , Machine Learning
9.
Water Res ; 164: 114919, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31382154

ABSTRACT

Fluvial networks are globally relevant for the processing of dissolved organic matter (DOM). To investigate the change in molecular DOM diversity along the river course, high-field FTICR mass spectrometry and NMR spectroscopy of riverine DOM as well as bacterial abundance and activity were measured in a third order stream along a land-use gradient from pristine, agricultural to urban landscapes. DOM composition showed a clear evolution along the river course with an initial decrease of average oxidation and unsaturation followed by an increased relative abundance of CHNO and CHOS compounds introduced by agriculture and waste water, respectively. DOM composition was dominated by rather unsaturated CHO compounds (H/C ≤ 1) in headwaters and by more aliphatic molecules at downstream sites. Oxygenated functional groups shifted from aromatic ethers and hydroxyl groups to aliphatic carboxylic acids and aliphatic hydroxyl groups. This massive dislocation of oxygen significantly increased the diversity of atomic environments in branched aliphatic groups from headwater to downstream DOM. Mass spectra of DOM enabled the detection of compositional relationships to bacterial abundance and activity which was positively related to more aliphatic components (H/C > 1) and negatively related to unsaturated components. FTICR mass and NMR spectra corroborated the initial decline in DOM molecular diversity predicted by the River Continuum Concept (RCC) but demonstrated an anthropogenic increase in the molecular diversity of DOM further downstream. While the high DOM molecular diversity in first order headwater streams was the result of small scale ecosystem plurality, agriculture and waste water treatment introduced many components in the lower reaches. These anthropogenic influences together with massive bacterial oxidation of DOM contributed to a growth of molecular diversity of downstream DOM whose composition and structure differed entirely from those found in pristine headwaters.


Subject(s)
Ecosystem , Organic Chemicals , Agriculture , Bacteria , Rivers
10.
Sci Total Environ ; 625: 519-530, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29291566

ABSTRACT

A large part of the organic carbon in streams is transported by pulses of terrestrial dissolved organic carbon (tDOC) during hydrological events, which is more pronounced in agricultural catchments due to their hydrological flashiness. The majority of the literature considers stationary benthic biofilms and hyporheic biofilms to dominate uptake and processing of tDOC. Here, we argue for expanding this viewpoint to planktonic bacteria, which are transported downstream together with tDOC pulses, and thus perceive them as a less variable resource relative to stationary benthic bacteria. We show that pulse DOC can contribute significantly to the annual DOC export of streams and that planktonic bacteria take up considerable labile tDOC from such pulses in a short time frame, with the DOC uptake being as high as that of benthic biofilm bacteria. Furthermore, we show that planktonic bacteria efficiently take up labile tDOC which strongly increases planktonic bacterial production and abundance. We found that the response of planktonic bacteria to tDOC pulses was stronger in smaller streams than in larger streams, which may be related to bacterial metacommunity dynamics. Furthermore, the response of planktonic bacterial abundance was influenced by soluble reactive phosphorus concentration, pointing to phosphorus limitation. Our data suggest that planktonic bacteria can efficiently utilize tDOC pulses and likely determine tDOC fate during downstream transport, influencing aquatic food webs and related biochemical cycles.

11.
Water Res ; 123: 513-523, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28697482

ABSTRACT

Streams are important sites of transformation of dissolved organic matter (DOM). The molecular characterization of DOM-quality changes requires sophisticated analytical evaluation techniques. The goal of our study was to link molecular DOM transformation with bacterial activity. We measured the degradation of leaf leachate over a gradient of bacterial production obtained by different rates of percolation of sediments in seven experimental flumes on five sampling dates. We developed a new strategy for evaluating molecular formula data sets obtained by ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), in which the time-dependent change of component abundance was fitted by a linear regression model after normalization of mass peak intensities. All components were categorized by calculating the slope (change of percent intensity per day) in each of the seven flumes. These slopes were then related to cumulative bacterial production. The concentration of DOM decreased quickly in all flumes. Bacterial activity was higher in flumes with percolated sediment than in those without percolation, whereas plankton bacterial activity was higher in flumes without percolation or without sediment. There were no differences in molecular-DOM characteristics between flumes, but there were distinct changes over time. Positive slopes, i.e. increasing intensities over time, were found for small molecules (MW < 450 Da) and high O/C ratios, whereas decreasing intensities were observed less often and only for large molecules and low O/C ratios. The positive slopes of produced components showed a positive relationship to bacterial production for small and for oxygen-rich components. The negative slopes of degraded components were negatively related to bacterial production for large and for oxygen-deficient molecules. Overall, the approach provided new insights into the transformation of specific molecular DOM components.


Subject(s)
Mass Spectrometry , Plankton , Water Pollutants, Chemical/analysis , Organic Chemicals/analysis , Oxygen
12.
Microb Ecol ; 74(3): 534-549, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28389726

ABSTRACT

Microbial decomposition of terrestrial carbon may be enhanced by the addition of easily decomposable compounds, a phenomenon referred to as priming effect. We investigated the microbial decomposition of terrestrial dissolved organic carbon (DOC) in one-stage and two-stage flow-through cultures (chemostats) in the absence and presence of growing phytoplankton as phytoplankton-derived organic matter might facilitate the mineralization of more refractory terrestrial compounds. Peat water and soil leachate were used as terrestrial substrates, and only slight DOC decomposition was observed in the absence of phytoplankton for both substrates. A priming effect was revealed via 14C data. Priming was more pronounced for the peat water substrate than for the soil leachate. The total DOC concentrations increased for both substrates in the presence of phytoplankton due to exudation and cell lysis. Samples from the soil leachate experiments were analyzed using ultra-high-resolution mass spectrometry (FT-ICR MS). Predominantly, the same saturated, aliphatic molecules with H/C ratios >1.5 were completely decomposed in the absence and in the presence of phytoplankton. The decomposition of more stable molecules differed in their intensity. Oxidized and unsaturated molecules with H/C ratios <1.0 and O/C ratios >0.4 were more strongly decomposed in phytoplankton presence (i.e., under priming). We conclude that an aquatic priming effect is not easily detectable via net concentration changes alone, and that qualitative investigations of the DOC processed by bacterial decomposition are necessary to detect aquatic priming.


Subject(s)
Bacteria/metabolism , Humic Substances/analysis , Soil/chemistry , Water/chemistry , Germany , Mass Spectrometry , Spectroscopy, Fourier Transform Infrared
13.
Sci Rep ; 7: 43739, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256613

ABSTRACT

Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.


Subject(s)
Aquaculture , Bacteria/metabolism , Biodegradation, Environmental , Biotransformation , Organic Chemicals/metabolism , Salmon , Animals , Carbon/chemistry , Carbon/metabolism , Ecosystem , Environmental Monitoring , Magnetic Resonance Spectroscopy , Microbiota , Organic Chemicals/chemistry , Rivers , Spectroscopy, Fourier Transform Infrared
14.
Sci Total Environ ; 577: 329-339, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27817920

ABSTRACT

Pre-dams are small reservoirs constructed upstream of the main drinking water reservoirs and are used for nutrient removal and sediment trapping. Little is known about the role of pre-dams regarding the production and decomposition of dissolved organic carbon (DOC) in relation to discharge and how this affects the quality of DOC in the water. We combined quantitative and qualitative investigations under different hydrological conditions at three pre-dams exhibiting a gradient from oligotrophic/high-DOC to eutrophic/low-DOC. All pre-dams were mainly autotrophic in their upper water layers. The ratio of OC production to total gained OC (i.e. OC import+OC production) decreased with increasing discharge. On average, 0-30% of the total gained OC was produced within the pre-dams. The amount of microbially decomposed DOC increased with the average water residence time (WRT) and with the trophic status of the pre-dams. Radiocarbon analyses of respired CO2 revealed that heterotrophic bacteria preferentially utilized old DOC components (195-395years before present) under base flow conditions, whereas younger components (modern, i.e. OC produced after 1950) were utilized at high discharge. DOC quality changed significantly over the year within the pre-dams: High proportions of algae-derived DOC were observed during base flow in summer, and the freshness index (ß/α ratio) decreased significantly with higher discharges. DOC production and quality changes in response to hydrological conditions should be considered for future water quality management in reservoirs, as climate scenarios for temperate regions predict decreased runoffs leading to longer WRT and increased eutrophication and production of algae-derived OC.


Subject(s)
Carbon/analysis , Drinking Water , Water Supply , Eutrophication , Hydrology , Seasons
15.
Sci Total Environ ; 548-549: 51-59, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26799807

ABSTRACT

Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries.


Subject(s)
Bacteria/metabolism , Drinking Water , Fresh Water , Water Pollutants/metabolism , Water Supply , Biofilms , Biomass , Fresh Water/microbiology , Humic Substances/analysis , Phosphorus/metabolism , Plankton/metabolism , Seasons , Water Pollutants/analysis
16.
J Microbiol Methods ; 121: 8-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26684856

ABSTRACT

A method for recovering CO2 respired by bacterioplankton for analysis of carbon isotopes was adapted for use with standard laboratory equipment without a technically demanding harvest line. The recovered CO2 was more depleted in (14)C than the dissolved organic carbon (DOC) source, which suggests a selective respiration of older carbon.


Subject(s)
Aquatic Organisms/chemistry , Carbon Dioxide/isolation & purification , Carbon Isotopes/analysis , Carbon Radioisotopes/analysis , Aquatic Organisms/metabolism , Bacteriological Techniques , Biomass , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Chemistry Techniques, Analytical , Solubility
17.
Sci Total Environ ; 537: 129-38, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26282747

ABSTRACT

Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide.


Subject(s)
Aquaculture , Environmental Monitoring/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Carbon/analysis , Chile
18.
Environ Monit Assess ; 187(7): 432, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26077023

ABSTRACT

As benthic biofilms mediate essential functions in stream ecosystems (e.g., carbon flux, storage of nutrients and other substances), the element-specific regulation of the biofilm composition is of great interest. We tested whether (1) the elemental composition of biofilms is related to that of the water column and (2) there are different accumulation patterns from the dissolved phase (adsorption) and the particulate phase (incorporation of suspended matter). We analysed biomass parameters, nutrients and metals in biofilms and surface waters at 28 sites within a stream network (Bode catchment, Germany). Algal biomass in biofilms was dominated by diatoms. The P/C ratio in biofilms was positively related to total phosphorus of surface water (and to the proportion of agricultural area in the catchment) indicating phosphorus limitation of biofilms, whereas the N/C ratio was not related to nitrate levels of surface water, and neither the P/C nor the N/C ratio to the concentration of dissolved organic carbon (DOC) of surface water. Biofilms were enriched in metals compared to their concentrations in water. The metals in biofilms were positively related to the concentration of dissolved metals in surface water for iron and strontium (but not for manganese, copper, zinc, arsenic or lead) and to the concentrations of particle-associated metals of surface waters for strontium and lead. Manganese and arsenic were the metals with a negative effect on the biomasses of biofilm diatoms and cyanobacteria. Overall, we observed element-specific accumulation patterns in biofilms with selected elements being related to the water column while others were probably subject to biofilm-internal processes.


Subject(s)
Biofilms , Chlorophyta/chemistry , Cyanobacteria/chemistry , Diatoms/chemistry , Metals, Heavy/analysis , Rivers/microbiology , Adsorption , Arsenic/analysis , Ecosystem , Elements , Environmental Monitoring , Germany , Metals/analysis , Nitrates/analysis , Particulate Matter , Phosphorus/analysis , Rivers/chemistry , Water/analysis , Water Pollutants, Chemical/analysis , Zinc/analysis
19.
Sci Total Environ ; 506-507: 353-60, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25460970

ABSTRACT

Streams and rivers are important sites of organic carbon mineralization which is dependent on the land use within river catchments. Here we tested whether planktonic and epilithic biofilm bacteria differ in their response to the quality of dissolved organic carbon (DOC). Thus, planktonic and biofilm bacterial production was compared with patterns of DOC along a land-use gradient in the Bode catchment area (Germany). The freshness index of DOC was positively related to the proportion of agricultural area in the catchment. The humification index correlated with the proportion of forest area. Abundance and production of planktonic bacteria were lower in headwaters than at downstream sites. Planktonic production was weakly correlated to the total concentration of DOC but more strongly to quality-measures as revealed by spectra indexes, i.e. positively to the freshness index and negatively to the humification index. In contrast to planktonic bacteria, abundance and production of biofilm bacteria were independent of DOC quality. This finding may be explained by the association of biofilm bacteria with benthic algae and an extracellular matrix which represent additional substrate sources. The data show that planktonic bacteria seem to be regulated at a landscape scale controlled by land use, whereas biofilm bacteria are regulated at a biofilm matrix scale controlled by autochthonous production. Thus, the effects of catchment-scale land use changes on ecosystem processes are likely lower in small streams dominated by biofilm bacteria than in larger streams dominated by planktonic bacteria.


Subject(s)
Bacteria/growth & development , Biofilms/growth & development , Humic Substances/analysis , Plankton/growth & development , Rivers/chemistry , Water Pollutants/analysis , Bacteria/classification , Ecosystem , Germany , Plankton/classification , Rivers/microbiology , Water Movements
20.
Microb Ecol ; 69(2): 361-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25515425

ABSTRACT

The fate of allochthonous dissolved organic carbon (DOC) in aquatic systems is primarily controlled by the turnover of heterotrophic bacteria. However, the roles that abiotic and biotic factors such as light and DOC release by aquatic primary producers play in the microbial decomposition of allochthonous DOC is not well understood. We therefore tested if light and autochthonous DOC additions would increase allochthonous DOC decomposition rates and change bacterial growth efficiencies and community composition (BCC). We established continuous growth cultures with different inocula of natural bacterial communities and alder leaf leachates (DOCleaf) with and without light exposure before amendment. Furthermore, we incubated DOCleaf together with autochthonous DOC from lysed phytoplankton cultures (DOCphyto). Our results revealed that pretreatments of DOCleaf with light resulted in a doubling of bacterial growth efficiency (BGE), whereas additions of DOCphyto or combined additions of DOCphyto and light had no effect on BGE. The change in BGE was not accompanied by shifts in the phylogenetic structure of the BCC, but BCC was influenced by the DOC source. Our results highlight that a doubling of BGE is not necessarily accompanied by a shift in BCC and that BCC is more strongly affected by resource properties.


Subject(s)
Bacteria/classification , Carbon/chemistry , Light , Bacteria/growth & development , DNA, Bacterial/genetics , Ecosystem , Phylogeny , Phytoplankton/growth & development , Phytoplankton/microbiology , Plant Leaves/microbiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...