Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 161: 252-60, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21683488

ABSTRACT

Data from 104 sediment cores from the Great Lakes and "inland lakes" in the region were compiled to assess historical and recent changes in mercury (Hg) deposition. The lower Great Lakes showed sharp increases in Hg loading c. 1850-1950 from point-source water dischargers, with marked decreases during the past half century associated with effluent controls and decreases in the industrial use of Hg. In contrast, Lake Superior and inland lakes exhibited a pattern of Hg loading consistent with an atmospheric source - gradual increases followed by recent (post-1980) decreases. Variation in sedimentary Hg flux among inland lakes was primarily attributed to the ratio of watershed area:lake area, and secondarily to a lake's proximity to emission sources. A consistent region-wide decrease (∼20%) of sediment-Hg flux suggests that controls on local and regional atmospheric Hg emissions have been effective in decreasing the supply of Hg to Lake Superior and inland lakes.


Subject(s)
Geologic Sediments/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Atmosphere/chemistry , Environmental Monitoring , Great Lakes Region , Ontario , Water Pollution, Chemical/statistics & numerical data , Weather
2.
Ecotoxicology ; 20(7): 1543-54, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21691858

ABSTRACT

We studied the spatial distribution patterns of mercury (Hg) in lake water, littoral sediments, zooplankton, crayfish, fish, and common loons in 44 lakes of the Adirondacks of New York State, USA, a region that has been characterized as a "biological Hg hotspot". Our study confirmed this pattern, finding that a substantial fraction of the lakes studied had fish and loon samples exceeding established criteria for human and wildlife health. Factors accounting for the spatial variability of Hg in lake water and biota were lake chemistry (pH, acid neutralizing capacity (ANC), percent carbon in sediments), biology (taxa presence, trophic status) and landscape characteristics (land cover class, lake elevation). Hg concentrations in zooplankton, fish and common loons were negatively associated with the lake water acid-base status (pH, ANC). Bioaccumulation factors (BAF) for methyl Hg (MeHg) increased from crayfish (mean log(10) BAF = 5.7), to zooplankton (5.9), to prey fish (6.2), to larger fish (6.3), to common loons (7.2). MeHg BAF values in zooplankton, crayfish, and fish (yellow perch equivalent) all increased with increasing lake elevation. Our findings support the hypothesis that bioaccumulation of MeHg at the base of the food chain is an important controller of Hg concentrations in taxa at higher trophic levels. The characteristics of Adirondack lake-watersheds (sensitivity to acidic deposition; significant forest and wetland land cover; and low nutrient inputs) contribute to elevated Hg concentrations in aquatic biota.


Subject(s)
Biota , Lakes/chemistry , Mercury/analysis , Mercury/pharmacokinetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/pharmacokinetics , Animals , Astacoidea , Birds , Environmental Monitoring/methods , Fishes , Food Chain , Geologic Sediments/analysis , Linear Models , Mercury/chemistry , Methylmercury Compounds/analysis , Methylmercury Compounds/chemistry , Methylmercury Compounds/pharmacokinetics , New York , Water Pollutants, Chemical/chemistry , Wetlands , Zooplankton
3.
Ecohealth ; 5(4): 426-41, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19294469

ABSTRACT

During the past century, anthropogenic activities have altered the distribution of mercury (Hg) on the earth's surface. The impacts of such alterations to the natural cycle of Hg can be minimized through coordinated management, policy decisions, and legislative regulations. An ability to quantitatively measure environmental Hg loadings and spatiotemporal trends of their fate in the environment is critical for science-based decision making. Here, we outline a Hg monitoring program for temperate estuarine and marine ecosystems on the Atlantic Coast of North America. This framework follows a similar, previously developed plan for freshwater and terrestrial ecosystems in the U.S. Methylmercury (MeHg) is the toxicologically relevant form of Hg, and its ability to bioaccumulate in organisms and biomagnify in food webs depends on numerous biological and physicochemical factors that affect its production, transport, and fate. Therefore, multiple indicators are needed to fully characterize potential changes of Hg loadings in the environment and MeHg bioaccumulation through the different marine food webs. In addition to a description of how to monitor environmental Hg loads for air, sediment, and water, we outline a species-specific matrix of biotic indicators that include shellfish and other invertebrates, fish, birds and mammals. Such a Hg monitoring template is applicable to coastal areas across the Northern Hemisphere and is transferable to arctic and tropical marine ecosystems. We believe that a comprehensive approach provides an ability to best detect spatiotemporal Hg trends for both human and ecological health, and concurrently identify food webs and species at greatest risk to MeHg toxicity.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Atlantic Ocean , Birds , Fishes , Invertebrates , Mammals , North America
4.
Environ Sci Technol ; 40(1): 82-9, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16433336

ABSTRACT

A mass balance model for mercury in Lake Champlain was developed in an effort to understand the sources, inventories, concentrations, and effects of mercury (Hg) contamination in the lake ecosystem. To construct the mass balance model, air, water, and sediment were sampled as a part of this project and other research/monitoring projects in the Lake Champlain Basin. This project produced a STELLA-based computer model and quantitative apportionments of the principal input and output pathways of Hg for each of 13 segments in the lake. The model Hg concentrations in the lake were consistent with measured concentrations. Specifically, the modeling identified surface water inflows as the largest direct contributor of Hg into the lake. Direct wet deposition to the lake was the second largest source of Hg followed by direct dry deposition. Volatilization and sedimentation losses were identified as the two major removal mechanisms. This study significantly improves previous estimates of the relative importance of Hg input pathways and of wet and dry deposition fluxes of Hg into Lake Champlain. It also provides new estimates of volatilization fluxes across different lake segments and sedimentation loss in the lake.


Subject(s)
Ecosystem , Environmental Monitoring , Mercury/analysis , Water Pollutants, Chemical/analysis , Great Lakes Region , Risk Assessment , Volatilization
5.
Ecotoxicology ; 14(1-2): 53-70, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15931958

ABSTRACT

Whereas many ecosystem characteristics and processes influence mercury accumulation in higher trophic-level organisms, the mercury flux from the atmosphere to a lake and its watershed is a likely factor in potential risk to biota. Atmospheric deposition clearly affects mercury accumulation in soils and lake sediments. Thus, knowledge of spatial patterns in atmospheric deposition may provide information for assessing the relative risk for ecosystems to exhibit excessive biotic mercury contamination. Atmospheric mercury concentrations in aerosol, vapor, and liquid phases from four observation networks were used to estimate regional surface concentration fields. Statistical models were developed to relate sparsely measured mercury vapor and aerosol concentrations to the more commonly measured mercury concentration in precipitation. High spatial resolution deposition velocities for different phases (precipitation, cloud droplets, aerosols, and reactive gaseous mercury (RGM)) were computed using inferential models. An empirical model was developed to estimate gaseous elemental mercury (GEM) deposition. Spatial patterns of estimated total mercury deposition were complex. Generally, deposition was higher in the southwest and lower in the northeast. Elevation, land cover, and proximity to urban areas modified the general pattern. The estimated net GEM and RGM fluxes were each greater than or equal to wet deposition in many areas. Mercury assimilation by plant foliage may provide a substantial input of methyl-mercury (MeHg) to ecosystems.


Subject(s)
Air Pollutants/analysis , Mercury/analysis , Animals , Atmosphere , Ecosystem , Environmental Monitoring , Food Chain , North America , Rain
6.
Ecotoxicology ; 14(1-2): 85-99, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15931960

ABSTRACT

Total atmospheric contribution of mercury (Hg(T)) to lake sediment was estimated using 210Pb-dated sediment cores. Algorithms based on estimates of lake and watershed processes were applied to more accurately assess anthropogenic contributions of Hg to the environment and Hg(T). Factors addressed include: lake-specific background accumulation rates of Hg (Hg(B)), variability of sediment accumulation rates that caused variation in Hg accumulation during the last 100-150 years (Hgv), and variable flux of anthropogenic Hg from the atmosphere (Hg(A)). These fluxes were normalized for sediment focusing using a regional, unsupported 210Pb correction factor to yield Hg(A,F). Time series maps of Hg(A,F) allow for comparison across time and space, and are provided for 1900, 1950, 1975 and 1990 across eastern New York and New England, USA. Deconstruction algorithms reduce inter-/intra-lake variability in Hg accumulation rates and improve temporal coherence. Hg(A,F) started to increase near the end of the 19th century to a maximum between 1970 and 1990, depending on the lake. Maximum Hg(T) across the region ranges from 27.1 to 175 microg/m2 year. Maximum Hg(A,F) ranged from 10.4 to 66.3 microg/m2 year. The timing of Hg(A,F) declines in response to decreased atmospheric deposition may be controlled by in-lake and in-watershed storage and transport of Hg-bearing sediment.


Subject(s)
Environmental Pollutants/history , Geologic Sediments/chemistry , Mercury/history , Models, Theoretical , Algorithms , History, 20th Century , New England , Reproducibility of Results , Water Supply
7.
Ecotoxicology ; 14(1-2): 101-11, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15931961

ABSTRACT

We report on an inventory and analysis of sediment mercury (Hg) concentrations from 579 sites across northeastern North America. Sediment Hg concentrations ranged from the limit of detection ca. 0.01-3.7 microg g(-1) (dry weight, d.w.), and the average concentration was 0.19 microg g(-1) (d.w.) Sediment methylmercury concentrations ranged from 0.15 to 21 ng g(-1) (d.w.) and the mean concentration was 3.83 ng g(-1) (d.w.). Total Hg concentrations (HgT) were greatest in lakes > reservoirs > rivers, although the proportion of Hg as methylmercury showed an inverse pattern. Total Hg was weakly and positively correlated with the sediment organic matter and percent of watershed as forested land, and weakly and negatively correlated with sediment solids content, drainage area, and agricultural land. Sediment methylmercury concentrations were weakly and positively correlated to wetland area, and weakly and negatively correlated to drainage area. Methylmercury, expressed as a percentage of HgT was positively correlated to agricultural land area. For sites with co-located sediment and fish-tissue sampling results, there was no relationship between sediment Hg and fish-tissue Hg. Finally, our data indicate that at least 44% of waters across the region have sediment HgT concentrations in excess of Canadian and United States minimum sediment contaminant guidelines for the protection of aquatic biota.


Subject(s)
Geologic Sediments/chemistry , Mercury/analysis , Water Pollutants/analysis , Environmental Monitoring , Fresh Water , North America
8.
Ecotoxicology ; 14(1-2): 125-34, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15931963

ABSTRACT

The physical factors controlling total mercury (HgT) and methylmercury (MeHg) concentrations in lakes and streams of northeastern USA were assessed in a regional data set containing 693 HgT and 385 corresponding MeHg concentrations in surface waters. Multiple regression models using watershed characteristics and climatic variables explained 38% or less of the variance in HgT and MeHg. Land cover percentages and soil permeability generally provided modest predictive power. Percent wetlands alone explained 19% of the variance in MeHg in streams at low-flow, and it was the only significant (p < 0.02) predictor for MeHg in lakes, albeit explaining only 7% of the variance. When stream discharge was added as a variable it became the dominant predictor for HgT in streams, improving the model r2 from 0.19 to 0.38. Stream discharge improved the MeHg model more modestly, from r2 of 0.25 to 0.33. Methylation efficiency (MeHg/HgT) was modeled well (r2 of 0.78) when a seasonal term was incorporated (sine wave with annual period). Physical models explained 18% of the variance in fish Hg concentrations in 134 lakes and 55% in 20 reservoirs. Our results highlight the important role of seasonality and short-term hydrologic changes to the delivery of Hg to water bodies.


Subject(s)
Mercury/analysis , Methylmercury Compounds/analysis , Models, Theoretical , Water Pollutants/analysis , Water Pollution/prevention & control , Animals , Environmental Monitoring , Fishes , Mercury/pharmacokinetics , Methylmercury Compounds/pharmacokinetics , New England , Permeability , Regression Analysis , Seasons , Soil , Tissue Distribution , Water Movements , Water Pollutants/pharmacokinetics
9.
Ecotoxicology ; 14(1-2): 163-80, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15931965

ABSTRACT

As part of an initiative to assemble and synthesize mercury (Hg) data from environmental matrices across northeastern North America, we analyzed a large dataset comprised of 15,305 records of fish tissue Hg data from 24 studies from New York State to Newfoundland. These data were summarized to provide mean Hg concentrations for 40 fish species and associated families. Detailed analyses were carried out using data for 13 species. Hg in fishes varied by geographic area, waterbody type, and waterbody. The four species with the highest mean Hg concentrations were muskellunge (Esox masquinongy), walleye (Sander vitreus), white perch (Morone americana), and northern pike (Esox luscius). Several species displayed elevated Hg concentrations in reservoirs, relative to lakes and rivers. Normalized deviations from mean tissue levels for yellow perch (Perca flavescens) and brook trout (Salvelinus fontinalis) were mapped, illustrating how Hg concentrations in these species varied across northeastern North America. Certain geographic regions showed generally below or above-average Hg concentrations in fish, while significant heterogeneity was evident across the landscape. The proportion of waterbodies exhibiting exceedances of USEPA's criterion for fish methylmercury ranged from 14% for standard-length brook trout fillets to 42% for standard-length yellow perch fillets. A preliminary correlation analysis showed that fish Hg concentrations were related to waterbody acidity and watershed size.


Subject(s)
Databases, Factual , Fishes , Geographic Information Systems , Mercury/analysis , Water Pollutants/analysis , Animals , Environmental Monitoring , Hydrogen-Ion Concentration , Mercury/pharmacokinetics , New England , Water/chemistry , Water Pollutants/pharmacokinetics
10.
Ecotoxicology ; 14(1-2): 135-47, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15934168

ABSTRACT

The northeastern USA receives some of the highest levels of atmospheric mercury deposition of any region in North America. Moreover, fish from many lakes in this region carry Hg burdens that present health risks to both human and wildlife consumers. The overarching goal of this study was to identify the attributes of lakes in this region that are most likely associated with high Hg burdens in fish. To accomplish this, we compared data collected in four separate multi-lake studies. Correlations among Hg in fish (4 studies) or in zooplankton and fish (2 studies) and numerous chemical, physical, land use, and ecological variables were compared across more than 150 lakes. The analysis produced three general findings. First, the most important predictors of Hg burdens in fish were similar among datasets. As found in past studies, key chemical covariates (e.g., pH, acid neutralizing capacity, and SO4) were negatively correlated with Hg bioaccumulation in the biota. However, negative correlations with several parameters that have not been previously identified (e.g., human land use variables and zooplankton density) were also found to be equally important predictors. Second, certain predictors were unique to individual datasets and differences in lake population characteristics, sampling protocols, and fish species in each study likely explained some of the contrasting results that we found in the analyses. Third, lakes with high rates of Hg bioaccumulation and trophic transfer have low pH and low productivity with relatively undisturbed watersheds suggesting that atmospheric deposition of Hg is the dominant or sole source of input. This study highlights several fundamental complexities when comparing datasets over different environmental conditions but also underscores the utility of such comparisons for revealing key drivers of Hg trophic transfer among different types of lakes.


Subject(s)
Food Chain , Mercury/pharmacokinetics , Water Pollutants/pharmacokinetics , Animals , Fishes , Hydrogen-Ion Concentration , Mercury/analysis , New England , Plankton , Tissue Distribution , Water/chemistry , Water Pollutants/analysis , Water Supply
11.
Environ Toxicol Chem ; 23(5): 1172-86, 2004 May.
Article in English | MEDLINE | ID: mdl-15180368

ABSTRACT

We report on mercury (Hg) contamination in waters, sediments, and biota of Vermont and New Hampshire (USA) lakes measured during 1998-2000, using a geographically randomized design. Waters and sediments of 92 lakes were sampled for mercury, methylmercury, and ancillary parameters. Yellow perch (Perca flavescens) muscle tissues were analyzed for mercury on 47 of these lakes. Interannual variation in mercury was limited; only epilimnetic Hg was elevated by approximately 1.5 ng/L in 1998 over remaining years because of wet weather. Aqueous total and methylmercury concentrations were elevated in both dystrophic and eutrophic lakes over other types. Yellow perch tissue concentrations were elevated by 0.218 microg/g in dystrophic lakes over other types and were very low in eutrophic lakes. Fish tissue mercury concentrations showed no relationship to hypolimnetic or sediment mercury or methylmercury. A statistical model indicated that yellow perch tissues in 40.2 +/- 13% of lakes were likely to exceed the U.S. Environmental Protection Agency (U.S. EPA) methylmercury criterion of 0.3 microg/g, and yellow perch from New Hampshire were twice as likely to exceed the criterion as those from Vermont. Results of this study provide a regional-scale baseline against which the success of future reductions in mercury emissions can be assessed.


Subject(s)
Biodiversity , Fresh Water/analysis , Geologic Sediments/analysis , Mercury/analysis , Water Pollutants, Chemical/analysis , Age Factors , Animals , Geography , Methylmercury Compounds/analysis , Methylmercury Compounds/toxicity , Multivariate Analysis , New Hampshire , Perches/metabolism , Research Design , Vermont
SELECTION OF CITATIONS
SEARCH DETAIL
...