Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805654

ABSTRACT

Managed honey bee (Apis mellifera L.) colonies in North America and Europe have experienced high losses in recent years, which have been linked to weather conditions, lack of quality forage, and high parasite loads, particularly the obligate brood parasite, Varroa destructor. These factors may interact at various scales to have compounding effects on honey bee health, but few studies have been able to simultaneously investigate the effects of weather conditions, landscape factors, and management of parasites. We analyzed a dataset of 3,210 survey responses from beekeepers in Pennsylvania from 2017 to 2022 and combined these with remotely sensed weather variables and novel datasets about seasonal forage availability into a Random Forest model to investigate drivers of winter loss. We found that beekeepers who used treatment against Varroa had higher colony survival than those who did not treat. Moreover, beekeepers who used multiple types of Varroa treatment had higher colony survival rates than those who used 1 type of treatment. Our models found weather conditions are strongly associated with survival, but multiple-treatment type colonies had higher survival across a broader range of climate conditions. These findings suggest that the integrated pest management approach of combining treatment types can potentially buffer managed honey bee colonies from adverse weather conditions.


Subject(s)
Beekeeping , Seasons , Varroidae , Weather , Animals , Bees/parasitology , Varroidae/physiology , Beekeeping/methods , Pennsylvania , Pest Control/methods , Colony Collapse
2.
Sci Total Environ ; 929: 172329, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38608892

ABSTRACT

As insect populations decline in many regions, conservation biologists are increasingly tasked with identifying factors that threaten insect species and developing effective strategies for their conservation. One insect group of global conservation concern are fireflies (Coleoptera: Lampyridae). Although quantitative data on firefly populations are lacking for most species, anecdotal reports suggest that some firefly populations have declined in recent decades. Researchers have hypothesized that North American firefly populations are most threatened by habitat loss, pesticide use, and light pollution, but the importance of these factors in shaping firefly populations has not been rigorously examined at broad spatial scales. Using data from >24,000 surveys (spanning 2008-16) from the citizen science program Firefly Watch, we trained machine learning models to evaluate the relative importance of a variety of factors on bioluminescent firefly populations: pesticides, artificial lights at night, land cover, soil/topography, short-term weather, and long-term climate. Our analyses revealed that firefly abundance was driven by complex interactions among soil conditions (e.g., percent sand composition), climate/weather (e.g., growing degree days), and land cover characteristics (e.g., percent agriculture and impervious cover). Given the significant impact that climactic and weather conditions have on firefly abundance, there is a strong likelihood that firefly populations will be influenced by climate change, with some regions becoming higher quality and supporting larger firefly populations, and others potentially losing populations altogether. Collectively, our results support hypotheses related to factors threatening firefly populations, especially habitat loss, and suggest that climate change may pose a greater threat than appreciated in previous assessments. Thus, future conservation of North American firefly populations will depend upon 1) consistent and continued monitoring of populations via programs like Firefly Watch, 2) efforts to mitigate the impacts of climate change, and 3) insect-friendly conservation practices.


Subject(s)
Citizen Science , Climate Change , Fireflies , Machine Learning , Animals , Fireflies/physiology , Ecosystem , Conservation of Natural Resources , Environmental Monitoring/methods
3.
Sci Data ; 11(1): 137, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278830

ABSTRACT

Due to the key role surrounding landscape plays in ecological processes, a detailed characterization of land cover is critical for researchers and conservation practitioners. Unfortunately, in the United States, land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this gap, we merged two datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce integrated 'Spatial Products for Agriculture and Nature' (SPAN). Our workflow leveraged strengths of the NVC and the CDL to create detailed rasters comprising both agricultural and natural land-cover classes. We generated SPAN annually from 2012-2021 for the conterminous United States, quantified agreement and accuracy of SPAN, and published the complete computational workflow. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved most conflicts, leaving only 0.6% of agricultural pixels unresolved in SPAN. These ready-to-use rasters characterizing both agricultural and natural land cover will be widely useful in environmental research and management.


Subject(s)
Agriculture , Forests , Conservation of Natural Resources , United States
4.
Sci Data ; 9(1): 571, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114185

ABSTRACT

Wild and managed pollinators are essential to food production and the function of natural ecosystems; however, their populations are threatened by multiple stressors including pesticide use. Because pollinator species can travel hundreds to thousands of meters to forage, recent research has stressed the importance of evaluating pollinator decline at the landscape scale. However, scientists' and conservationists' ability to do this has been limited by a lack of accessible data on pesticide use at relevant spatial scales and in toxicological units meaningful to pollinators. Here, we synthesize information from several large, publicly available datasets on pesticide use patterns, land use, and toxicity to generate novel datasets describing pesticide use by active ingredient (kg, 1997-2017) and aggregate insecticide load (kg and honey bee lethal doses, 1997-2014) for state-crop combinations in the contiguous U.S. Furthermore, by linking pesticide datasets with land-use data, we describe a method to map pesticide indicators at spatial scales relevant to pollinator research and conservation.


Subject(s)
Agriculture , Insecticides , Pesticides , Pollination , Agriculture/methods , Animals , Bees , Conservation of Natural Resources , Ecosystem
5.
Glob Chang Biol ; 27(6): 1250-1265, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33433964

ABSTRACT

Wild bees, like many other taxa, are threatened by land-use and climate change, which, in turn, jeopardizes pollination of crops and wild plants. Understanding how land-use and climate factors interact is critical to predicting and managing pollinator populations and ensuring adequate pollination services, but most studies have evaluated either land-use or climate effects, not both. Furthermore, bee species are incredibly variable, spanning an array of behavioral, physiological, and life-history traits that can increase or decrease resilience to land-use or climate change. Thus, there are likely bee species that benefit, while others suffer, from changing climate and land use, but few studies have documented taxon-specific trends. To address these critical knowledge gaps, we analyzed a long-term dataset of wild bee occurrences from Maryland, Delaware, and Washington DC, USA, examining how different bee genera and functional groups respond to landscape composition, quality, and climate factors. Despite a large body of literature documenting land-use effects on wild bees, in this study, climate factors emerged as the main drivers of wild-bee abundance and richness. For wild-bee communities in spring and summer/fall, temperature and precipitation were more important predictors than landscape composition, landscape quality, or topography. However, relationships varied substantially between wild-bee genera and functional groups. In the Northeast USA, past trends and future predictions show a changing climate with warmer winters, more intense precipitation in winter and spring, and longer growing seasons with higher maximum temperatures. In almost all of our analyses, these conditions were associated with lower abundance of wild bees. Wild-bee richness results were more mixed, including neutral and positive relationships with predicted temperature and precipitation patterns. Thus, in this region and undoubtedly more broadly, changing climate poses a significant threat to wild-bee communities.


Subject(s)
Crops, Agricultural , Pollination , Animals , Bees , Maryland , Seasons , Temperature
6.
Sci Rep ; 10(1): 22306, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339846

ABSTRACT

The pollination services provided by bees are essential for supporting natural and agricultural ecosystems. However, bee population declines have been documented across the world. Many of the factors known to undermine bee health (e.g., poor nutrition) can decrease immunocompetence and, thereby, increase bees' susceptibility to diseases. Given the myriad of stressors that can exacerbate disease in wild bee populations, assessments of the relative impact of landscape habitat conditions on bee pathogen prevalence are needed to effectively conserve pollinator populations. Herein, we assess how landscape-level conditions, including various metrics of floral/nesting resources, insecticides, weather, and honey bee (Apis mellifera) abundance, drive variation in wild bumble bee (Bombus impatiens) pathogen loads. Specifically, we screened 890 bumble bee workers from varied habitats in Pennsylvania, USA for three pathogens (deformed wing virus, black queen cell virus, and Vairimorpha (= Nosema) bombi), Defensin expression, and body size. Bumble bees collected within low-quality landscapes exhibited the highest pathogen loads, with spring floral resources and nesting habitat availability serving as the main drivers. We also found higher loads of pathogens where honey bee apiaries are more abundant, a positive relationship between Vairimorpha loads and rainfall, and differences in pathogens by geographic region. Collectively, our results highlight the need to support high-quality landscapes (i.e., those with abundant floral/nesting resources) to maintain healthy wild bee populations.


Subject(s)
Bees/physiology , Dicistroviridae/pathogenicity , Microsporidia/pathogenicity , Pollination/physiology , Agriculture , Animals , Bees/anatomy & histology , Bees/microbiology , Bees/virology , Ecosystem , Pennsylvania , Seasons
7.
Sci Data ; 7(1): 240, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32686678

ABSTRACT

With documented global declines in insects, including wild bees, there has been increasing interest in developing and expanding insect monitoring programs. Our objective here was to organize, validate, and share an analysis-ready version of one of the few existing long-term monitoring datasets for wild bees in the United States. Since 1999, the Native Bee Inventory and Monitoring Lab (BIML) of the United States Geological Survey has sampled wild-bee communities in the Mid-Atlantic U.S., but samples were collected in multiple studies and the datasets are not fully integrated. Furthermore, critical information about sampling methodology was often lacking, though these factors can significantly influence collection outcomes and must be considered in analyses. We cleaned and verified BIML data from Maryland, Delaware, and Washington DC, USA, and generated sampling methodology for over 84% of the 99,053 pan-trapped occurrences in this region. We enthusiastically invite creative analyses of this rich dataset to advance understanding of the biology and ecology of wild bees, inform conservation efforts, and perhaps help design a nationwide bee monitoring program.


Subject(s)
Animal Distribution , Bees , Animals , Delaware , District of Columbia , Maryland
8.
Sci Rep ; 8(1): 8467, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855528

ABSTRACT

Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.


Subject(s)
Crops, Agricultural , Soil/chemistry , Climate Change , Ecosystem , Glycine max/growth & development
9.
PLoS One ; 11(8): e0160974, 2016.
Article in English | MEDLINE | ID: mdl-27560666

ABSTRACT

Yield stability is fundamental to global food security in the face of climate change, and better strategies are needed for buffering crop yields against increased weather variability. Regional- scale analyses of yield stability can support robust inferences about buffering strategies for widely-grown staple crops, but have not been accomplished. We present a novel analytical approach, synthesizing 2000-2014 data on weather and soil factors to quantify their impact on county-level maize yield stability in four US states that vary widely in these factors (Illinois, Michigan, Minnesota and Pennsylvania). Yield stability is quantified as both 'downside risk' (minimum yield potential, MYP) and 'volatility' (temporal yield variability). We show that excessive heat and drought decreased mean yields and yield stability, while higher precipitation increased stability. Soil water holding capacity strongly affected yield volatility in all four states, either directly (Minnesota and Pennsylvania) or indirectly, via its effects on MYP (Illinois and Michigan). We infer that factors contributing to soil water holding capacity can help buffer maize yields against variable weather. Given that soil water holding capacity responds (within limits) to agronomic management, our analysis highlights broadly relevant management strategies for buffering crop yields against climate variability, and informs region-specific strategies.


Subject(s)
Crops, Agricultural/growth & development , Soil/chemistry , Zea mays/growth & development , Agriculture/methods , Climate , Climate Change , Droughts , Illinois , Linear Models , Michigan , Minnesota , Pennsylvania , Seasons , Temperature , Water , Weather
10.
Environ Entomol ; 45(1): 32-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26385933

ABSTRACT

Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem.


Subject(s)
Bees/physiology , Biodiversity , Forests , Malus , Animals , Crops, Agricultural/growth & development , Malus/growth & development , Pennsylvania , Pollination
SELECTION OF CITATIONS
SEARCH DETAIL
...