Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 15(7)2023 07 13.
Article in English | MEDLINE | ID: mdl-37515232

ABSTRACT

The number of identified human polyomaviruses (HPyVs) has increased steadily over the last decade. Some of the novel HPyVs have been shown to cause disease in immunocompromised individuals. The Lyon-IARC polyomavirus (LIPyV) belonging to species Alphapolyomavirus quardecihominis was identified in 2017 in skin and saliva samples from healthy individuals. Since its initial discovery, LIPyV has rarely been detected in human clinical samples but has been detected in faeces from cats with diarrhoea. Serological studies show low LIPyV seroprevalence in human populations. To investigate the possibility that LIPyV is a feline rather than a human polyomavirus, we compared serum IgG responses against the VP1 major capsid protein of LIPyV and 13 other HPyVs among cats (n = 40), dogs (n = 38) and humans (n = 87) using an in-house immunoassay. Seropositivity among cats was very high (92.5%) compared to dogs (31.6%) and humans (2.3%). Furthermore, the median antibody titres against LIPyV were 100-10,000x higher in cats compared to dogs and humans. In conclusion, the high prevalence and intensity of measured seroresponses suggest LIPyV to be a feline rather than a human polyomavirus. Whether LIPyV infection induces diarrhoea or other symptoms in cats remains to be established.


Subject(s)
Polyomavirus Infections , Polyomavirus , Humans , Cats , Animals , Dogs , Seroepidemiologic Studies , Polyomavirus Infections/diagnosis , Skin , Immunoassay
2.
iScience ; 25(1): 103613, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35036862

ABSTRACT

The Polyomaviridae is a family of ubiquitous dsDNA viruses that establish persistent infection early in life. Screening for human polyomaviruses (HPyVs), which comprise 14 diverse species, relies upon species-specific qPCRs whose validity may be challenged by accelerating genomic exploration of the virosphere. Using this reasoning, we tested 64 published HPyV qPCR assays in silico against the 1781 PyV genome sequences that were divided in targets and nontargets, based on anticipated species specificity of each qPCR. We identified several cases of problematic qPCR performance that were confirmed in vitro and corrected through using degenerate oligos. Furthermore, our study ranked 8 out of 52 tested BKPyV qPCRs as remaining of consistently high quality in the wake of recent PyV discoveries and showed how sensitivity of most other qPCRs could be rescued by annealing temperature adjustment. This study establishes an efficient framework for ensuring confidence in available HPyV qPCRs in the genomic era.

3.
J Clin Virol ; 143: 104944, 2021 10.
Article in English | MEDLINE | ID: mdl-34450559

ABSTRACT

INTRODUCTION: Human polyomaviruses (HPyVs) cause disease in immunocompromised patients. BK polyomavirus (BKPyV) for instance persistently infects the kidneys. In kidney transplant recipients, (KTRs) BKPyV can cause allograft nephropathy. JCPyV, MCPyV, TSPyV and HPyV9 reside in the kidneys too, or have been detected in urine. In this study, we investigate exposure to JCPyV, MCPyV, TSPyV and HPyV9 after kidney transplantation by serological means. MATERIALS AND METHODS: Serum samples from 310 KTR collected before and 6 months after transplantation (n = 620), from 279 corresponding kidney donors collected before transplantation, and from blood donor controls collected one year apart (n = 174) were assessed for HPyV species-specific IgG responses using a multiplex immunoassay. KTR HPyV IgG kinetics were compared to those of healthy blood donors by linear mixed modeling, and related to those of their donors by linear regression. RESULTS: In the KTR, increased IgG levels during follow-up were observed for JCPyV (14.8%), MCPyV (7.1%), TSPyV (10.6%), and for HPyV9 (8.1%), while blood donor antibody levels remained stable. Seroconversion was observed for JCPyV (6.5%), MCPyV (2.3%), TSPyV (1.3%), and for HPyV9 (6.5%). The linear mixed model analysis showed that antibody increase was significant for JCPyV (p < 0.001) and HPyV9 (p < 0.001). Post-transplant JCPyV and HPyV9 antibody responses were associated with donor antibody levels against these HPyVs, respectively. CONCLUSIONS: KTR are exposed to JCPyV and HPyV9 after transplantation. Whether the allograft serves as the source, as indicated by the donor serostatus association, deserves further study.


Subject(s)
BK Virus , JC Virus , Kidney Transplantation , Polyomavirus Infections , Polyomavirus , Tumor Virus Infections , Blood Donors , Cohort Studies , Humans , Kidney Transplantation/adverse effects , Polyomaviridae
4.
J Clin Virol ; 134: 104691, 2021 01.
Article in English | MEDLINE | ID: mdl-33278791

ABSTRACT

Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols.


Subject(s)
Metagenomics , Viruses , High-Throughput Nucleotide Sequencing , Viruses/genetics
5.
Transfusion ; 59(12): 3689-3697, 2019 12.
Article in English | MEDLINE | ID: mdl-31633816

ABSTRACT

BACKGROUND: Human polyomaviruses (HPyVs), like herpesviruses, cause persistent infection in a large part of the population. In immunocompromised and elderly patients, PyVs cause severe diseases such as nephropathy (BK polyomavirus [BKPyV]), progressive multifocal leukoencephalopathy (JC polyomavirus [JCPyV]), and skin cancer (Merkel cell polyomavirus [MCPyV]). Like cytomegalovirus, donor-derived PyV can cause disease in kidney transplant recipients. Possibly blood components transmit PyVs as well. To study this possibility, as a first step we determined the presence of PyV DNA in Dutch blood donations. STUDY DESIGN AND METHODS: Blood donor serum samples (n = 1016) were analyzed for the presence of DNA of 14 HPyVs using HPyV species-specific quantitative polymerase chain reaction (PCR) procedures. PCR-positive samples were subjected to confirmation by sequencing. Individual PCR findings were compared with the previously reported PyV serostatus. RESULTS: MC polyomavirus DNA was detected in 39 donors (3.8%), JCPyV and TS polyomavirus (TSPyV) DNA in five donors (both 0.5%), and HPyV9 DNA in four donors (0.4%). BKPyV, WU polyomavirus (WUPyV), HPyV6, MW polyomavirus (MWPyV), and LI polyomavirus (LIPyV) DNA was detected in one or two donors. Amplicon sequencing confirmed the expected product for BKPyV, JCPyV, WUPyV, MCPyV, HPyV6, TSPyV, MWPyV, HPyV9, and LIPyV. For JCPyV a significant association was observed between detection of viral DNA and the level of specific IgG antibodies. CONCLUSION: In 5.4% of Dutch blood donors PyV DNA was detected, including DNA from pathogenic PyVs such as JCPyV. As a next step, the infectivity of PyV in donor blood and transmission via blood components to immunocompromised recipients should be investigated.


Subject(s)
Blood Donors/statistics & numerical data , DNA, Viral/analysis , Polyomavirus/genetics , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Polymerase Chain Reaction , Polyomavirus/isolation & purification , Polyomavirus/pathogenicity , Prevalence , Young Adult
6.
PLoS One ; 13(10): e0206273, 2018.
Article in English | MEDLINE | ID: mdl-30352098

ABSTRACT

The polyomavirus family currently includes thirteen human polyomavirus (HPyV) species. In immunocompromised and elderly persons HPyVs are known to cause disease, such as progressive multifocal leukoencephalopathy (JCPyV), haemorrhagic cystitis and nephropathy (BKPyV), Merkel cell carcinoma (MCPyV), and trichodysplasia spinulosa (TSPyV). Some recently discovered polyomaviruses are of still unknown prevalence and pathogenic potential. Because HPyVs infections persist and might be transferred by blood components to immunocompromised patients, we studied the seroprevalence of fourteen polyomaviruses in adult Dutch blood donors. For most polyomaviruses the observed seroprevalence was high (60-100%), sometimes slightly increasing or decreasing with age. Seroreactivity increased with age for JCPyV, HPyV6 and HPyV7 and decreased for BKPyV and TSPyV. The most recently identified polyomaviruses HPyV12, NJPyV and LIPyV showed low overall seroprevalence (~5%) and low seroreactivity, questioning their human tropism. Altogether, HPyV infections are common in Dutch blood donors, with an average of nine polyomaviruses per subject.


Subject(s)
Polyomavirus Infections/epidemiology , Adolescent , Adult , Aged , Antibodies, Viral/blood , Blood Donors , Female , Humans , Immunoassay , Immunoglobulin G/blood , Male , Middle Aged , Netherlands/epidemiology , Polyomavirus/immunology , Polyomavirus Infections/diagnosis , Polyomavirus Infections/virology , Prevalence , Young Adult
7.
J Clin Microbiol ; 56(4)2018 04.
Article in English | MEDLINE | ID: mdl-29305551

ABSTRACT

The family of polyomaviruses, which cause severe disease in immunocompromised hosts, has expanded substantially in recent years. To accommodate measurement of IgG seroresponses against all currently known human polyomaviruses (HPyVs), including the Lyon IARC polyomavirus (LIPyV), we extended our custom multiplex bead-based HPyV immunoassay and evaluated the performance of this pan-HPyV immunoassay. The VP1 proteins of 15 HPyVs belonging to 13 Polyomavirus species were expressed as recombinant glutathione S-transferase (GST) fusion proteins and coupled to fluorescent Luminex beads. Sera from healthy blood donors and immunocompromised kidney transplant recipients were used to analyze seroreactivity against the different HPyVs. For BK polyomavirus (BKPyV), the GST-VP1 fusion protein-directed seroresponses were compared to those obtained against BKPyV VP1 virus-like particles (VLP). Seroreactivity against most HPyVs was common and generally high in both test populations. Low seroreactivity against HPyV9, HPyV12, New Jersey PyV, and LIPyV was observed. The assay was reproducible (Pearson's r2 > 0.84, P < 0.001) and specific. Weak but consistent cross-reactivity between the related viruses HPyV6 and HPyV7 was observed. The seroresponses measured by the GST-VP1-based immunoassay and a VP1 VLP-based enzyme-linked immunosorbent assay were highly correlated (Spearman's ρ = 0.823, P < 0.001). The bead-based pan-HPyV multiplex immunoassay is a reliable tool to determine HPyV-specific seroresponses with high reproducibility and specificity and is suitable for use in seroepidemiological studies.


Subject(s)
Antibodies, Viral/blood , Immunoglobulin G/blood , Polyomavirus Infections/diagnosis , Polyomavirus/immunology , Seroepidemiologic Studies , Capsid Proteins/blood , Capsid Proteins/genetics , Capsid Proteins/immunology , Cross Reactions , Fluorescence , Glutathione Transferase/genetics , Humans , Immunoassay/instrumentation , Immunoassay/methods , Immunocompromised Host , Immunologic Tests/instrumentation , Immunologic Tests/methods , Polyomavirus Infections/immunology , Polyomavirus Infections/virology , Reproducibility of Results , Sensitivity and Specificity , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...