Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 40(11): 1555-1562, 2022 03 08.
Article in English | MEDLINE | ID: mdl-33509692

ABSTRACT

BPZE1 is a live attenuated vaccine against infection by Bordetella pertussis, the causative agent of whooping cough. It was previously shown that BPZE1 provides heterologous protection in mouse models of disease caused by unrelated pathogens, such as influenza virus and respiratory syncytial virus. Protection was also observed in mouse models of asthma and contact dermatitis. In this study, we demonstrate that BPZE1 also displays protection against an unrelated bacterial pathogen in a mouse model of invasive pneumococcal disease mediated by Streptococcus pneumoniae. While a single administration of BPZE1 provided no protection, two doses of 106 colony-forming units of BPZE1 given in a three-week interval protected against mortality, lung colonization and dissemination in both BALB/c and C57BL/6 mice. Unlike for the previously reported influenza challenge model, protection was short-lived, and waned within days after booster vaccination. Formaldehyde-killed BPZE1 protected only when administered following a live prime, indicating that priming requires live BPZE1 for protection. Protection against mortality was directly linked to substantially decreased bacterial dissemination in the blood and was lost in MyD88 knock-out mice, demonstrating the role of the innate immune system in the mechanism of protection. This is the first report on a heterologous protective effect of the live BPZE1 vaccine candidate against an unrelated bacterial infection.


Subject(s)
Pneumococcal Infections , Whooping Cough , Administration, Intranasal , Animals , Bordetella pertussis , Mice , Mice, Inbred C57BL , Pertussis Vaccine , Pneumococcal Infections/prevention & control , Vaccines, Attenuated , Whooping Cough/prevention & control
2.
Curr Opin Microbiol ; 66: 11-20, 2022 04.
Article in English | MEDLINE | ID: mdl-34923331

ABSTRACT

Listeria monocytogenes (Lm) is a foodborne pathogen and the etiological agent of listeriosis. This facultative intracellular Gram-positive bacterium has the ability to colonize the intestinal lumen, cross the intestinal, blood-brain and placental barriers, leading to bacteremia, neurolisteriosis and maternal-fetal listeriosis. Lm is a model microorganism for the study of the interplay between a pathogenic microbe, host tissues and microbiota in vivo. Here we review how animal models permissive to Lm-host interactions allow deciphering some of the key steps of the infectious process, from the intestinal lumen to the crossing of host barriers and dissemination within the host. We also highlight recent investigations using tagged Lm and clinically relevant strains that have shed light on within-host dynamics and the purifying selection of Lm virulence factors. Studying Lm infection in vivo is a way forward to explore host biology and unveil the mechanisms that have selected its capacity to closely associate with its vertebrate hosts.


Subject(s)
Listeria monocytogenes , Listeriosis , Animals , Bacterial Proteins , Female , Host-Pathogen Interactions , Listeria monocytogenes/genetics , Placenta , Pregnancy
3.
J Exp Med ; 216(4): 728-742, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30814299

ABSTRACT

Intestinal immune homeostasis is dependent upon tightly regulated and dynamic host interactions with the commensal microbiota. Immunoglobulin A (IgA) produced by mucosal B cells dictates the composition of commensal bacteria residing within the intestine. While emerging evidence suggests the majority of IgA is produced innately and may be polyreactive, mucosal-dwelling species can also elicit IgA via T cell-dependent mechanisms. However, the mechanisms that modulate the magnitude and quality of T cell-dependent IgA responses remain incompletely understood. Here we demonstrate that group 3 innate lymphoid cells (ILC3) regulate steady state interactions between T follicular helper cells (TfH) and B cells to limit mucosal IgA responses. ILC3 used conserved migratory cues to establish residence within the interfollicular regions of the intestinal draining lymph nodes, where they act to limit TfH responses and B cell class switching through antigen presentation. The absence of ILC3-intrinsic antigen presentation resulted in increased and selective IgA coating of bacteria residing within the colonic mucosa. Together these findings implicate lymph node resident, antigen-presenting ILC3 as a critical regulatory checkpoint in the generation of T cell-dependent colonic IgA and suggest ILC3 act to maintain tissue homeostasis and mutualism with the mucosal-dwelling commensal microbiota.


Subject(s)
Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , B-Lymphocytes/immunology , Colon/microbiology , Immunoglobulin A/immunology , Intestinal Mucosa/microbiology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Bacteria/immunology , Colon/immunology , Female , Gastrointestinal Microbiome/immunology , Helicobacter/immunology , Histocompatibility Antigens Class II/immunology , Homeostasis/immunology , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
4.
Immunity ; 48(1): 120-132.e8, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29343433

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis.


Subject(s)
Colitis/metabolism , Lymphocytes/metabolism , Lymphoid Tissue/metabolism , Oxysterols/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Movement/genetics , Colitis/immunology , Colitis/pathology , Colon/immunology , Colon/pathology , Cytokines/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Ligands , Lymphocytes/pathology , Lymphoid Tissue/pathology , Mice , Real-Time Polymerase Chain Reaction , Signal Transduction
5.
Vaccine ; 32(34): 4281-8, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24950361

ABSTRACT

Pertussis is a severe and life-threatening infectious disease. Two successive generations of vaccines have strongly reduced its incidence over the last 70 years. However, despite excellent global vaccine coverage, it is still not under control and constitutes today the most frequent vaccine-preventable childhood disease. New vaccination approaches are therefore needed. Here, we provide preclinical proof of concept for a heterologous prime-boost strategy, using the live attenuated Bordetella pertussis vaccine candidate BPZE1 to prime infant and neonatal mice intranasally and a currently available acellular pertussis vaccine (aPV) as a booster. Intranasal vaccination with BPZE1 provided strong protection against challenge in neonatal mice, which could be boosted with a single dose of aPV. Furthermore, BPZE1 priming induced a strong Th1/Th17 response, which was maintained after repeated aPV administrations, in contrast to non-primed mice, in which aPV administrations resulted in Th2 skewing. In addition to T cell responses, intranasal administration of BPZE1 to infant or neonatal mice also primed antibody responses to B. pertussis antigens, with a strong preference of the IgG2a over the IgG1 isotypes, which was not seen in non-primed animals. Finally, neonatal BPZE1 priming strongly enhanced aPV-induced protection against B. pertussis challenge. These results lend support for a heterologous prime-boost strategy to control pertussis by using BPZE1 early in life and considering the current aPV administrations as booster vaccinations, thereby bridging the gap from birth to the first aPV immunizations and avoiding aPV-mediated Th2 skewing. A first-in-man clinical trial on BPZE1 has recently been successfully completed, which provides hope that these findings may be translated into human applications in the future.


Subject(s)
Immunity, Cellular , Immunization, Secondary , Pertussis Vaccine/immunology , Whooping Cough/prevention & control , Administration, Intranasal , Animals , Animals, Newborn , Antibodies, Bacterial/blood , Antibody Formation , Bordetella pertussis/classification , Cytokines/immunology , Female , Immunoglobulin G/blood , Mice, Inbred BALB C , Th1 Cells/immunology , Th17 Cells/immunology , Vaccines, Attenuated/immunology
6.
PLoS One ; 8(3): e59198, 2013.
Article in English | MEDLINE | ID: mdl-23555631

ABSTRACT

BACKGROUND: Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a live attenuated Bordetella pertussis vaccine, called BPZE1, and show here that it can be used to present the universal influenza virus epitope M2e to the mouse respiratory tract to prime for protective immunity against viral challenge. Three copies of M2e were genetically fused to the N-terminal domain of filamentous hemagglutinin (FHA) and produced in recombinant BPZE1 derivatives in the presence or absence of endogenous full-length FHA. Only in the absence of FHA intranasal administration of the recombinant BPZE1 derivative induced antibody responses to M2e and effectively primed BALB/c mice for protection against influenza virus-induced mortality and reduced the viral load after challenge. Strong M2e-specific antibody responses and protection were observed after a single nasal administration with the recombinant BPZE1 derivative, followed by a single administration of M2e linked to a virus-like particle without adjuvant, whereas priming alone with the vaccine strain did not protect. CONCLUSIONS/SIGNIFICANCE: Using recombinant FHA-3M2e-producing BPZE1 derivatives for priming and the universal influenza M2e peptide linked to virus-like particles for boosting may constitute a promising approach for needle-free and adjuvant-free nasal vaccination against influenza.


Subject(s)
Adhesins, Bacterial/immunology , Antibodies, Viral/blood , Bordetella pertussis/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Recombinant Fusion Proteins/immunology , Viral Matrix Proteins/immunology , Virulence Factors, Bordetella/immunology , Adhesins, Bacterial/genetics , Administration, Intranasal , Animals , Bordetella pertussis/genetics , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Respiratory System/drug effects , Respiratory System/immunology , Respiratory System/virology , Survival Analysis , Vaccination , Vaccines, Synthetic , Viral Matrix Proteins/genetics , Virulence Factors, Bordetella/genetics
7.
Vaccine ; 30(40): 5864-70, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22814407

ABSTRACT

Bordetella bronchiseptica, a gram-negative bacterium, causes chronic respiratory tract infections in a wide variety of mammalian hosts, including man, and no human vaccine is currently available. Acellular pertussis vaccines protect poorly against B. bronchiseptica, although they contain cross-reactive antigens. We have recently developed Bordetella pertussis BPZE1, a novel, live attenuated pertussis vaccine, currently completing phase I clinical trials in humans, and found that it protects against both B. pertussis and Bordetella parapertussis in mice. Here, we show that a single nasal administration of BPZE1 protects mice against lethal infection with B. bronchiseptica. After challenge, the vaccinated animals displayed markedly reduced lung inflammation and tissue damage, decreased neutrophil infiltration and increased levels of CD4(+)CD25(+)FoxP3(+) regulatory T cells in the lungs compared to non-immunized mice. Depletion of these cells abolished BPZE1-induced protection, indicating that BPZE1 protects against lethal inflammation through the recruitment of regulatory T cells. In addition, the B. bronchiseptica load was significantly decreased in the vaccinated animals. Using passive transfer experiments, protection was found to be essentially cell mediated, and BPZE1-induced Th1 and Th17 T cells recognize whole B. bronchiseptica extracts, although the participation of antibodies in protection cannot be discounted. Thus, a single administration of BPZE1 can confer protection against B. bronchiseptica in mice by a dual mechanism.


Subject(s)
Bordetella Infections/prevention & control , Bordetella bronchiseptica/immunology , Pertussis Vaccine/immunology , Administration, Intranasal , Adoptive Transfer , Animals , Antibodies, Bacterial/blood , Bacterial Load , Bordetella Infections/immunology , Bordetella pertussis/immunology , Cytokines/immunology , Female , Immunity, Cellular , Immunization/methods , Lung/immunology , Mice , Mice, Inbred BALB C , Mice, SCID , Pneumonia/immunology , Pneumonia/microbiology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Vaccines, Attenuated/immunology
8.
Vaccine ; 28(43): 7047-53, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20708998

ABSTRACT

Duration of vaccine-induced immunity plays a key role in the epidemiology and in the pattern of transmission of a vaccine-preventable disease. In the case of whooping cough, its re-emergence has been attributed, at least partly, to the waning of immunity conferred by current pertussis vaccines. We have recently developed a highly attenuated live vaccine, named BPZE1, which has been shown to be safe and to induce strong protective immunity against Bordetella pertussis infection in mice. In this study, we evaluated the long-term immunogenicity and protective efficacy induced by a single intranasal dose of BPZE1. Up to 1 year after immunization, BPZE1 showed significantly higher efficacy to protect adult and infant mice against B. pertussis infection than two administrations of an acellular pertussis vaccine (aPV). B. pertussis-specific antibodies were induced by live BPZE1 and by aPV, with increasing amounts during the first 6 months post-immunization before a progressive decline. Cell-mediated immunity was also measured 1 year after immunization and showed the presence of memory T cells in the spleen of BPZE1-immunized mice. Both cell-mediated and humoral immune responses were involved in the long-lasting protection induced by BPZE1, as demonstrated by adoptive transfer experiments to SCID mice. These data highlight the potential of the live attenuated BPZE1 candidate vaccine as part of a strategy to solve the problem of waning protective immunity against B. pertussis observed with the current aPV vaccines.


Subject(s)
Immunologic Memory , Pertussis Vaccine/immunology , Whooping Cough/prevention & control , Administration, Intranasal , Adoptive Transfer , Animals , Antibodies, Bacterial/blood , Bordetella pertussis/immunology , Immunity, Cellular , Immunity, Humoral , Mice , Mice, Inbred BALB C , Mice, SCID , Spleen/cytology , T-Lymphocytes/immunology , Vaccines, Attenuated/immunology , Whooping Cough/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...