Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(31): 21395-21420, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37469965

ABSTRACT

Nowadays, an increased interest from the chemical industry towards the furanic compounds production, renewable molecules alternatives to fossil molecules, which can be transformed into a wide range of chemicals and biopolymers. These molecules are produced following hexose and pentose dehydration. In this context, lignocellulosic biomass, owing to its richness in carbohydrates, notably cellulose and hemicellulose, can be the starting material for monosaccharide supply to be converted into bio-based products. Nevertheless, processing biomass is essential to overcome the recalcitrance of biomass, cellulose crystallinity, and lignin crosslinked structure. The previous reports describe only the furanic compound production from monosaccharides, without considering the starting raw material from which they would be extracted, and without paying attention to raw material pretreatment for the furan production pathway, nor the mass balance of the whole process. Taking account of these shortcomings, this review focuses, firstly, on the conversion potential of different European abundant lignocellulosic matrices into 5-hydroxymethyl furfural and 2-furfural based on their chemical composition. The second line of discussion is focused on the many technological approaches reported so far for the conversion of feedstocks into furan intermediates for polymer technology but highlighting those adopting the minimum possible steps and with the lowest possible environmental impact. The focus of this review is to providing an updated discussion of the important issues relevant to bringing chemically furan derivatives into a market context within a green European context.

2.
J Vis Exp ; (169)2021 03 09.
Article in English | MEDLINE | ID: mdl-33779613

ABSTRACT

Pretreatment is still the most expensive step in lignocellulosic biorefinery processes. It must be made cost-effective by minimizing chemical requirements as well as power and heat consumption and by using environment-friendly solvents. Deep eutectic solvents (DESs) are key, green, and low-cost solvents in sustainable biorefineries. They are transparent mixtures characterized by low freezing points resulting from at least one hydrogen bond donor and one hydrogen bond acceptor. Although DESs are promising solvents, it is necessary to combine them with an economic heating technology, such as microwave irradiation, for competitive profitability. Microwave irradiation is a promising strategy to shorten the heating time and boost fractionation because it can rapidly attain the appropriate temperature. The aim of this study was to develop a one-step, rapid method for biomass fractionation and lignin extraction using a low-cost and biodegradable solvent. In this study, a microwave-assisted DES pretreatment was conducted for 60 s at 800 W, using three kinds of DESs. The DES mixtures were facilely prepared from choline chloride (ChCl) and three hydrogen-bond donors (HBDs): a monocarboxylic acid (lactic acid), a dicarboxylic acid (oxalic acid), and urea. This pretreatment was used for biomass fractionation and lignin recovery from marine residues (Posidonia leaves and aegagropile), agri-food byproducts (almond shells and olive pomace), forest residues (pinecones), and perennial lignocellulosic grasses (Stipa tenacissima). Further analyses were conducted to determine the yield, purity, and molecular weight distribution of the recovered lignin. In addition, the effect of DESs on the chemical functional groups in the extracted lignin was determined by Fourier-transform infrared (FTIR) spectroscopy. The results indicate that the ChCl-oxalic acid mixture affords the highest lignin purity and the lowest yield. The present study demonstrates that the DES-microwave process is an ultrafast, efficient, and cost-competitive technology for lignocellulosic biomass fractionation.


Subject(s)
Lignin/therapeutic use , Animals
3.
Waste Manag ; 118: 247-257, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32916421

ABSTRACT

The integration of easily available and under-exploited biomasses is considered a sustainable strategy in biorefining approaches. Mediterranean countries, especially Algeria, Morocco, and Tunisia, offer such under-exploited waste of different origins. This study revealed the chemical composition and phytochemical characteristics of various agri-food side-products, marine residues, and wild grasses collected in the Maghreb region. Results showed that these wastes contained variable proportions of polysaccharides, lignin, constitute molecules (proteins, lipids, and inorganic molecules) and, various secondary metabolites, mainly flavonoids and condensed tannins. Based on this, the Mediterranean waste was divided into three categories. The first category included waste with high lignin content (40 wt%). The second category contained waste with lignin content below 10 wt% and structural carbohydrate content below 50 wt%. Additionally, the waste in this category comprised noticeable amounts of flavonoids and condensed tannins, particularly from thistle, speedwell, and spurge. Finally, the third category included waste with lignin content above 15 wt% and carbohydrate content in the range of 45-55 wt%. The results also showed that the waste in the third category has a chemical composition similar to that of raw materials envisioned for use in European or North American commercial biorefineries. The findings of this study indicate that the biomass waste employed in this study can be used to develop marketable bioproducts and may be a potential raw material for a biorefinery facility.


Subject(s)
Lignin , Poaceae , Biomass , Food , Morocco
4.
Front Chem ; 7: 132, 2019.
Article in English | MEDLINE | ID: mdl-30968011

ABSTRACT

In biorefining, the conversion of carbohydrates under subcritical water conditions is a field of extensive studies. In particular, the hydrothermal decomposition of benchmark C6- and C5-monosaccharides, i.e., D-glucose and D-xylose, into furanics and/or organic acids is fully considered. Herein, we propose to establish the fundamentals of the decomposition of D-glucose and D-xylose under subcritical water conditions in the presence of specific salts (i.e., NaCl and KI) and in seawater. Our results demonstrated that the introduction of inorganic salts was found to modify sugars dehydration yields. Different NaCl concentrations from 0.21 to 1.63 mol L-1 promoted the conversion of D-xylose to 2-furfural (2-F) from 28 to 44% (molar yield). NaCl also improved 5-hydroxymethylfurfural (5-HMF) generation from D-glucose as well as rehydration of 5-HMF to levulinic and formic acid. KI favored other pathways toward formic acid production from D-glucose, reaching 20% in the upper concentration. Compared to a solution of equivalent NaCl concentration, seawater enhanced selectivity toward lactic acid which was raised by 10% for both monosaccharides, and sugars conversion, especially for D-glucose whose conversion was increased by 20%. 5-HMF molar yield around 30% were achieved from D-glucose in seawater at 211°C and 20 bars after 15 min.

SELECTION OF CITATIONS
SEARCH DETAIL
...