Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7477, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978177

ABSTRACT

Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into "Metabolic genotypes" (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Child , Humans , Animals , Mice , Infant , Child, Preschool , Streptococcus pneumoniae/genetics , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Malawi/epidemiology , Virulence/genetics , Drug Resistance, Bacterial/genetics , Pneumococcal Vaccines , Serogroup , Nasopharynx , Carrier State/epidemiology
2.
Chemosphere ; 271: 129817, 2021 May.
Article in English | MEDLINE | ID: mdl-33736210

ABSTRACT

Many in vivo and in vitro studies have shown that pesticides can disrupt the functioning of gut microbiota (GM), which can lead to many diseases in humans. While the tests developed by the Organization of Economic Cooperation and Development (OECD) are expected to capture most apical effects resulting from GM disruptions, exclusion of GM in the risk assessment might mischaracterize hazards or overestimate/underestimate risks, especially when extrapolating results from one species to another species or population with a substantially different GM. On the other hand, direct assessment of GM-mediated effects may face challenges in identifying hazards, since not all GM perturbations will lead to human adverse effects. In this regard, reliable and validated biomarkers for common GM-mediated adverse effects may be very useful in the identification of GM-mediated pesticide toxicity. Nevertheless, proving causality of GM-mediated effects will need modifications of Bradford Hill criteria as well as Koch's postulates, which are more suitable for the "one-pathogen" paradigm. Furthermore, risk assessment of GM-mediated effects may require pesticide toxicokinetics along the gut, possibly through modeling, and the establishment of the involvement of GM in the mechanism of action (MOA) of the pesticide. Risk assessment of GM mediated effects also requires the standardization of experimental approaches as well as the establishment of microbial reference communities, since variations exist among GM in human populations.


Subject(s)
Gastrointestinal Microbiome , Pesticides , Humans , Pesticides/toxicity , Risk Assessment , Toxicokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...