Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
EJNMMI Phys ; 10(1): 10, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36752876

ABSTRACT

BACKGROUND: The aim was to review available biokinetic data, collect own experimental data, and propose an updated compartmental model for 2-[18F]FDG in the frame of the revision of the ICRP report on dose coefficients for radiopharmaceuticals used in diagnostic nuclear medicine. METHODS: The compartmental model was developed based on published biokinetic data for 2-[18F]FDG. Additional data on urinary excretion in 23 patients (11 males, 12 females) undergoing whole-body PET/CT examinations were obtained within this study. The unknown biokinetic model parameters were derived using the software SAAM II and verified with a modified version of IDAC-Iodide. Dose coefficients for reference adults were calculated with the programme IDAC-Dose 2.1. A dynamic bladder model was employed for urinary bladder dosimetry. RESULTS: The proposed model consists of following compartments: blood, heart wall, brain, liver, lungs, pancreas, spleen, kidneys, urinary bladder content and a generic pool compartment "Other". The latter was introduced to account for 2-[18F]FDG in body organ and tissues besides the explicitly modelled ones. The model predictions showed a good agreement with experimental data. Urinary bladder wall received the highest absorbed dose coefficient of 7.5E-02 mGy/MBq under the assumption of initial urine volume of 100 ml, first voiding at 45 min p.i. and 3.75 h voiding intervals thereafter. The effective dose coefficient calculated according to the current dosimetry framework of ICRP amounted to 1.7E-02 mSv/MBq, compared to 1.9E-02 mSv/MBq in ICRP Publication 128. CONCLUSION: A compartmental model for 2-[18F]FDG was proposed and will be used to replace the descriptive biokinetic model of ICRP Publication 128. The revised model and the provided dose coefficients are expected to improve reference dosimetry for patients administered with 2-[18F]FDG.

2.
Nuklearmedizin ; 60(3): 233-239, 2021 Jun.
Article in German | MEDLINE | ID: mdl-33572000

ABSTRACT

Radiation exposure from nuclear medicine procedures during pregnancy may cause uncertainty among patients and medical professionals. In 2019, the German Society of Medical Physics (DGMP) and the German Society of Radiology (DRG) published a fully revised version of the report "Prenatal Radiation Exposure Arising from Medical Indication, Dose Calculation, Conclusions for Physicians and Pregnant Women". This report offers a basis for dose calculation and determination of radiation exposure to the unborn. This review summarizes the most notable general adaptions made in the report's newest version and specifically points out the changes relevant to the field of nuclear medicine.The DGMP report provides physicians and medical physicists with means to estimate prenatal radiation exposure to the unborn conservatively, in a prompt and comprehensible approach. The rapidly evolving field of indications in nuclear medicine and radiology gave rise to the initiative of profoundly revising the previous version of the report from 2002. It now accounts for the extended range of devices, nuclear medicine hybrid imaging and radiotracers recently introduced. The most extensive change is a shift from the former 3-step-concept for the dose calculation to a 2-step-concept. In diagnostic nuclear medicine the first step comprises a conservative approximation of radiation exposure on the basis of current diagnostic reference levels (DRL). If exposure is assessed to be below 20 mSv, risk to the unborn child is sufficiently low, no further approaches are considered necessary. If calculated doses exceed 20 mSv, for diagnostic studies without existing DRL or in case of radionuclide therapies step 2 requires dose calculation based on administered activity and the stage of pregnancy.The DGMP report on prenatal radiation exposure offers valuable guidance for physicians and medical physicists in the field of nuclear medicine. The calculation concept provides an important basis to estimate radiation exposure to the unborn. Its extensive revision in 2019 accounts for recent scientific and technical developments and a reform of the stepwise approach to dose estimation.


Subject(s)
Nuclear Medicine , Radiation Exposure , Diagnostic Imaging , Female , Humans , Pregnancy , Radiation Dosage , Radiography , Radionuclide Imaging
3.
Rofo ; 193(7): 778-786, 2021 Jul.
Article in English, German | MEDLINE | ID: mdl-33327031

ABSTRACT

BACKGROUND: The exposure of a pregnant woman to X-rays is an event that can cause uncertainty for all concerned. This review provides guidance on how to assess such a situation and how to determine the dose to the unborn child. In general, the use of X-rays in pregnant women in radiology should be avoided. If possible, alternatives should be used, or examinations postponed to a time after the pregnancy. This review gives a summary of the procedure for determining the radiation exposure of a pregnant woman. METHOD: Based on the previous report of 2002 and the literature on prenatal radiation exposure published thereafter, the DGMP/DRG report on the procedure for the assessment of prenatal radiation exposure was adapted to the current state of science and technology. RESULTS: Typically, only relatively low radiation exposures of less than 20 mSv occur for the unborn child in X-ray diagnostics in the vast majority of cases. At these dose level the additional risk of damage to the embryo or fetus caused by the radiation is low and therefore only a rough conservative estimate using tabulated values are made. Only in a few types of examination (CT and interventional radiology) higher doses values might occur in the uterus. Instead of dose estimates (step 1 in the two-step model) in these cases the calculation of dose (step 2) are required and further action by the physician may be necessary. CONCLUSIONS: During the assessment, it is useful to initially use simple conservative estimation procedures to quickly determine whether a case falls into this large group less than 20 mSv, where there is a very low risk to the unborn child. If this is the case, the pregnant woman should be informed immediately by the doctor who performed the examination/treatment. This avoids a psychological burden on the patient. The DGMP/DRG report suggests a relatively simple, clearly structured procedure with advantages for all parties involved (physician, medical physics experts, MTRA and patient). KEY POINTS: · The DGMP/DRG report on prenatal radiation exposure describes the procedure for calculating radiation exposures and the associated risks for the unborn child.. · Using the two-step model, only a simple assessment based on the first step is necessary for most prenatal radiation exposures.. · With the given tables it is possible to estimate individual risks for the unborn child taking into account the radiation exposure.. · Only in the rare case that the first estimate results in a uterine dose larger 20 mSv a more accurate calculation is necessary.. CITATION FORMAT: · Fiebich M, Block A, Borowski M et al. Prenatal radiation exposure in diagnostic and interventional radiology. Fortschr Röntgenstr 2021; 193: 778 - 786.


Subject(s)
Fetus/radiation effects , Radiation Dosage , Radiation Exposure/adverse effects , Radiology, Interventional , Dose-Response Relationship, Radiation , Female , Humans , Pregnancy , Radiation Exposure/analysis
4.
EJNMMI Res ; 10(1): 43, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32346810

ABSTRACT

BACKGROUND: Given the increasing clinical use of PET/MRI, potential risks to patients from simultaneous exposure to ionising radiation and (electro)magnetic fields should be thoroughly investigated as a precaution. With this aim, the genotoxic potential of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and a strong static magnetic field (SMF) were evaluated both in isolation and in combination using the γH2AX assay detecting double-strand breaks in lymphocyte DNA. METHODS: Thirty-two healthy young volunteers allocated to three study arms were exposed to [18F]FDG alone, to a 3-T SMF alone or to both combined over 60 min at a PET/CT or a PET/MRI system. Blood samples taken after in vivo exposure were incubated up to 60 min to extend the irradiation of blood by residual [18F]FDG within the samples and the time to monitor the γH2AX response. Absorbed doses to lymphocytes delivered in vivo and in vitro were estimated individually for each volunteer exposed to [18F]FDG. γH2AX foci were scored automatically by immunofluorescence microscopy. RESULTS: Absorbed doses to lymphocytes exposed over 60 to 120 min to [18F]FDG varied between 1.5 and 3.3 mGy. In this time interval, the radiotracer caused a significant median relative increase of 28% in the rate of lymphocytes with at least one γH2AX focus relative to the background rate (p = 0.01), but not the SMF alone (p = 0.47). Simultaneous application of both agents did not result in a significant synergistic or antagonistic outcome (p = 0.91). CONCLUSION: There is no evidence of a synergism between [18F]FDG and the SMF that may be of relevance for risk assessment of PET/MRI.

SELECTION OF CITATIONS
SEARCH DETAIL
...