Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
NPJ Vaccines ; 5(1): 33, 2020.
Article in English | MEDLINE | ID: mdl-32377398

ABSTRACT

A growing global health concern, Lyme disease has become the most common tick-borne disease in the United States and Europe. Caused by the bacterial spirochete Borrelia burgdorferi sensu lato (sl), this disease can be debilitating if not treated promptly. Because diagnosis is challenging, prevention remains a priority; however, a previously licensed vaccine is no longer available to the public. Here, we designed a six component vaccine that elicits antibody (Ab) responses against all Borrelia strains that commonly cause Lyme disease in humans. The outer surface protein A (OspA) of Borrelia was fused to a bacterial ferritin to generate self-assembling nanoparticles. OspA-ferritin nanoparticles elicited durable high titer Ab responses to the seven major serotypes in mice and non-human primates at titers higher than a previously licensed vaccine. This response was durable in rhesus macaques for more than 6 months. Vaccination with adjuvanted OspA-ferritin nanoparticles stimulated protective immunity from both B. burgdorferi and B. afzelii infection in a tick-fed murine challenge model. This multivalent Lyme vaccine offers the potential to limit the spread of Lyme disease.

2.
Vaccine ; 37(42): 6208-6220, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31493950

ABSTRACT

Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antibodies, Neutralizing/immunology , Influenza Vaccines/immunology , Adjuvants, Immunologic/chemistry , Animals , Female , HEK293 Cells , Hemagglutination Inhibition Tests , Hemagglutinins , Humans , Macaca mulatta , Mice, Inbred BALB C , Nanoparticles , Toll-Like Receptors/agonists
3.
Mol Microbiol ; 99(3): 453-69, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26175126

ABSTRACT

Phosphate is essential for life, being used in many core processes such as signal transduction and synthesis of nucleic acids. The waterborne agent of cholera, Vibrio cholerae, encounters phosphate limitation in both the aquatic environment and human intestinal tract. This bacterium can utilize extracellular DNA (eDNA) as a phosphate source, a phenotype dependent on secreted endo- and exonucleases. However, no transporter of nucleotides has been identified in V. cholerae, suggesting that in order for the organism to utilize the DNA as a phosphate source, it must first separate the phosphate and nucleoside groups before transporting phosphate into the cell. In this study, we investigated the factors required for assimilation of phosphate from eDNA. We identified PhoX, and the previously unknown proteins UshA and CpdB as the major phosphatases that allow phosphate acquisition from eDNA and nucleotides. We demonstrated separable but partially overlapping roles for the three phosphatases and showed that the activity of PhoX and CpdB is induced by phosphate limitation. Thus, this study provides mechanistic insight into how V. cholerae can acquire phosphate from extracellular DNA, which is likely to be an important phosphate source in the environment and during infection.


Subject(s)
Bacterial Proteins/metabolism , Cholera/microbiology , DNA/metabolism , Nucleotides/metabolism , Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Vibrio cholerae/enzymology , Bacterial Proteins/genetics , Cholera/metabolism , Gene Expression Regulation, Bacterial , Humans , Phosphoric Monoester Hydrolases/genetics , Vibrio cholerae/genetics , Vibrio cholerae/metabolism
4.
Int J Antimicrob Agents ; 41(1): 28-35, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23142086

ABSTRACT

Pyrrolamides are a novel class of antibacterial agents that target DNA gyrase, resulting in inhibition of DNA synthesis and bacterial cell death. In these studies, advanced compounds were shown to have potent in vitro activity against selected Gram-positive and Gram-negative pathogens, including meticillin-resistant Staphylococcus aureus, meticillin- and quinolone-resistant S. aureus, vancomycin-resistant enterococci, penicillin-resistant Streptococcus pneumoniae and ß-lactamase-producing Haemophilus influenzae and Moraxella catarrhalis. Representatives of the class were demonstrated to be bactericidal, with frequencies of spontaneous resistance ≤1×10(-7) when plated at concentrations equivalent to their minimum inhibitory concentration. Mode of action studies suggested that the activity of these compounds is due to inhibition of the GyrB subunit of DNA gyrase in key pathogens. The antibacterial activity, spectrum and mode of action of these compounds underscore the promise of the pyrrolamide series as attractive candidates for the treatment of several clinical indications, including respiratory and soft tissue infections.


Subject(s)
Amides/pharmacology , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Pyrroles/pharmacology , Topoisomerase II Inhibitors , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests
5.
PLoS Pathog ; 9(12): e1003800, 2013.
Article in English | MEDLINE | ID: mdl-24385900

ABSTRACT

Vibrio cholerae has evolved to adeptly transition between the human small intestine and aquatic environments, leading to water-borne spread and transmission of the lethal diarrheal disease cholera. Using a host model that mimics the pathology of human cholera, we applied high density transposon mutagenesis combined with massively parallel sequencing (Tn-seq) to determine the fitness contribution of >90% of all non-essential genes of V. cholerae both during host infection and dissemination. Targeted mutagenesis and validation of 35 genes confirmed our results for the selective conditions with a total false positive rate of 4%. We identified 165 genes never before implicated for roles in dissemination that reside within pathways controlling many metabolic, catabolic and protective processes, from which a central role for glycogen metabolism was revealed. We additionally identified 76 new pathogenicity factors and 414 putatively essential genes for V. cholerae growth. Our results provide a comprehensive framework for understanding the biology of V. cholerae as it colonizes the small intestine, elicits profuse secretory diarrhea, and disseminates into the aquatic environment.


Subject(s)
Genetic Fitness , Life Cycle Stages/genetics , Vibrio cholerae/growth & development , Vibrio cholerae/genetics , Adaptation, Physiological/genetics , Animals , Animals, Newborn , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Microbial Viability/genetics , Organisms, Genetically Modified , Rabbits , Water
6.
PLoS Pathog ; 7(8): e1002153, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21829361

ABSTRACT

Facultative bacterial pathogens must adapt to multiple stimuli to persist in the environment or establish infection within a host. Temperature is often utilized as a signal to control expression of virulence genes necessary for infection or genes required for persistence in the environment. However, very little is known about the molecular mechanisms that allow bacteria to adapt and respond to temperature fluctuations. Listeria monocytogenes (Lm) is a food-borne, facultative intracellular pathogen that uses flagellar motility to survive in the extracellular environment and to enhance initial invasion of host cells during infection. Upon entering the host, Lm represses transcription of flagellar motility genes in response to mammalian physiological temperature (37°C) with a concomitant temperature-dependent up-regulation of virulence genes. We previously determined that down-regulation of flagellar motility is required for virulence and is governed by the reciprocal activities of the MogR transcriptional repressor and the bifunctional flagellar anti-repressor/glycosyltransferase, GmaR. In this study, we determined that GmaR is also a protein thermometer that controls temperature-dependent transcription of flagellar motility genes. Two-hybrid and gel mobility shift analyses indicated that the interaction between MogR and GmaR is temperature sensitive. Using circular dichroism and limited proteolysis, we determined that GmaR undergoes a temperature-dependent conformational change as temperature is elevated. Quantitative analysis of GmaR in Lm revealed that GmaR is degraded in the absence of MogR and at 37°C (when the MogR:GmaR complex is less stable). Since MogR represses transcription of all flagellar motility genes, including transcription of gmaR, changes in the stability of the MogR:GmaR anti-repression complex, due to conformational changes in GmaR, mediates repression or de-repression of flagellar motility genes in Lm. Thus, GmaR functions as a thermo-sensing anti-repressor that incorporates temperature signals into transcriptional control of flagellar motility. To our knowledge, this is the first example of a protein thermometer that functions as an anti-repressor to control a developmental process in bacteria.


Subject(s)
Bacterial Proteins/biosynthesis , Flagella/metabolism , Gene Expression Regulation, Bacterial/physiology , Listeria monocytogenes/metabolism , Signal Transduction/physiology , Virulence Factors/biosynthesis , Bacterial Proteins/genetics , Flagella/genetics , Hot Temperature , Listeria monocytogenes/genetics , Listeria monocytogenes/pathogenicity , Virulence Factors/genetics
7.
Mol Microbiol ; 74(2): 421-35, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19796338

ABSTRACT

Flagellar motility in Listeria monocytogenes (Lm) is restricted to temperatures below 37 degrees C due to the opposing activities of the MogR transcriptional repressor and the GmaR antirepressor. Previous studies have suggested that both the DegU response regulator and MogR regulate expression of GmaR. In this report, we further define the role of DegU for GmaR production and flagellar motility. We demonstrate that deletion of the receiver domain of DegU has no effect on flagellar motility in Lm. Using transcriptional reporter fusions, we determined that gmaR is cotranscribed within an operon initiating with fliN. Furthermore, the fliN-gmaR promoter (p(fliN-gmaR)) is transcriptionally activated by DegU and is also MogR-repressed. DNA affinity purification, gel mobility shift and footprinting analyses revealed that both DegU and MogR directly bind fliN-gmaR promoter region DNA and that the binding sites do not overlap. Quantitative analysis of gmaR transcripts in Delta mogR bacteria indicated that transcriptional activation of p(fliN-gmaR) by DegU is not inherently temperature-dependent. However, GmaR protein was not detectable at 37 degrees C in Delta mogR bacteria, indicating that a temperature-dependent, post-transcriptional mechanism limits GmaR production to temperatures below 37 degrees C. Our findings reveal that flagellar motility in Lm is governed by both temperature-dependent transcriptional and post-transcriptional regulation of the GmaR antirepressor.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Flagella/physiology , Listeria monocytogenes/genetics , Temperature , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites , DNA Footprinting , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Flagella/genetics , Flagella/metabolism , Gene Expression Regulation, Bacterial , Listeria monocytogenes/metabolism , Listeria monocytogenes/physiology , Molecular Sequence Data , Operon , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Protein Processing, Post-Translational , Sequence Alignment , Transcriptional Activation
8.
Proteomics ; 7(6): 992-1003, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17370256

ABSTRACT

The hallmark of a systems biology approach is the integration of computational tools with experimental data encompassing multiple classes of biomolecules across different functional levels. Equally important as the availability of reasonably comprehensive information at the gene, protein, and metabolite levels is the development of adequate analysis and visualization tools to reduce the inherent complexity to interpretable dimensions. In this paper, we describe the integration of a 2-D gel-based proteome map of Staphylococcus aureus Mu50 with genomic and transcriptomic information through a customized data integration and user interface built on the Ensembl genome browser. We illustrate its application and potential through the analysis of a defined system perturbation caused by a mutation in the formyltransferase gene. We envision that this software package, which we called Insieme, can support the development of novel antibiotics by allowing a systems-based view of the bacterial response pathways.


Subject(s)
Bacteria/pathogenicity , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Proteomics , Systems Biology , Bacterial Proteins/genetics , Electrophoresis, Gel, Two-Dimensional , Oligonucleotide Array Sequence Analysis , Proteome/analysis , Proteomics/methods , Sequence Analysis, Protein , Software , Staphylococcus aureus
9.
Antimicrob Agents Chemother ; 51(3): 1004-10, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17220413

ABSTRACT

Previous genetic analysis of Haemophilus influenzae revealed two mechanisms associated with decreased susceptibility to the novel peptide deformylase inhibitor LBM415: AcrAB-TolC-mediated efflux and Fmt bypass, resulting from mutations in the pump repressor gene acrR and in the fmt gene, respectively. We have isolated an additional mutant, CDS23 (LBM415 MIC, 64 microg/ml versus 4 microg/ml against the parent strain NB65044) that lacks mutations in the acrR or fmt structural genes or in the gene encoding Def, the intracellular target of LBM415. Western immunoblot analysis, two-dimensional gel electrophoresis, and tryptic digestion combined with mass spectrometric identification showed that the Def protein was highly overexpressed in the mutant strain. Consistent with this, real-time reverse transcription-PCR revealed a significant increase in def transcript titer. No mutations were found in the region upstream of def that might account for altered expression; however, pulsed-field gel electrophoresis suggested that a genetic rearrangement of the region containing def had occurred. Using a combination of PCR, sequencing, and Southern blot analyses, it was determined that the def gene had undergone copy number amplification, explaining the high level of target protein expression. Inactivation of the AcrAB-TolC efflux pump in this mutant increased susceptibility 16-fold, highlighting the role of efflux in exacerbating the overall reduced susceptibility resulting from target overexpression.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Chromosomes, Bacterial/genetics , Enzyme Inhibitors/pharmacology , Haemophilus influenzae/drug effects , Peptides/pharmacology , Amidohydrolases/biosynthesis , Amidohydrolases/genetics , Blotting, Southern , Culture Media , DNA, Bacterial/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli Proteins/genetics , Gene Dosage , Gene Expression Regulation, Enzymologic/drug effects , Hydrolysis , Microbial Sensitivity Tests , Mutation/physiology , Oligonucleotide Array Sequence Analysis , Repressor Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypsin/chemistry
10.
Genes Dev ; 20(23): 3283-95, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17158746

ABSTRACT

Flagellar motility is an essential mechanism by which bacteria adapt to and survive in diverse environments. Although flagella confer an advantage to many bacterial pathogens for colonization during infection, bacterial flagellins also stimulate host innate immune responses. Consequently, many bacterial pathogens down-regulate flagella production following initial infection. Listeria monocytogenes is a facultative intracellular pathogen that represses transcription of flagellar motility genes at physiological temperatures (37 degrees C and above). Temperature-dependent expression of flagellar motility genes is mediated by the opposing activities of MogR, a DNA-binding transcriptional repressor, and DegU, a response regulator that functions as an indirect antagonist of MogR. In this study, we identify an additional component of the molecular circuitry governing temperature-dependent flagellar gene expression. At low temperatures (30 degrees C and below), MogR repression activity is specifically inhibited by an anti-repressor, GmaR. We demonstrate that GmaR forms a stable complex with MogR, preventing MogR from binding its DNA target sites. GmaR anti-repression activity is temperature dependent due to DegU-dependent transcriptional activation of gmaR at low temperatures. Thus, GmaR production represents the first committed step for flagella production in L. monocytogenes. Interestingly, GmaR also functions as a glycosyltransferase exhibiting O-linked N-acetylglucosamine transferase (OGT) activity for flagellin (FlaA). GmaR is the first OGT to be identified and characterized in prokaryotes that specifically beta-O-GlcNAcylates a prokaryotic protein. Unlike the well-characterized, highly conserved OGT regulatory protein in eukaryotes, the catalytic activity of GmaR is functionally separable from its anti-repression function. These results establish GmaR as the first known example of a bifunctional protein that transcriptionally regulates expression of its enzymatic substrate.


Subject(s)
Listeria monocytogenes/enzymology , Listeria monocytogenes/genetics , N-Acetylglucosaminyltransferases/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Conserved Sequence , Flagella/physiology , Molecular Sequence Data , Phylogeny , Repressor Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...