Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23496625

ABSTRACT

Ponderomotive forces (PFs) induced in cold subwavelength plasmas by an externally applied electromagnetic wave are studied analytically. To this end, the plasma is modeled as a sphere with a radially varying permittivity, and the internal electric fields are calculated by solving the macroscopic Maxwell equations using an expansion in Debye potentials. It is found that the PF is directed opposite to the plasma density gradient, similarly to large-scale plasmas. In the case of a uniform density profile, a residual spherically symmetric compressive PF is found, suggesting possibilities for contactless ponderomotive manipulation of homogeneous subwavelength objects. The presence of a surface PF on discontinuous plasma boundaries is derived. This force is essential for a microscopic description of the radiation-plasma interaction consistent with momentum conservation. It is shown that the PF integrated over the plasma volume is equivalent to the radiation pressure exerted on the plasma by the incident wave. The concept of radiative acceleration of subwavelength plasmas, proposed earlier, is applied to ultracold plasmas. It is estimated that these plasmas may be accelerated to keV ion energies, resulting in a neutralized beam with a brightness comparable to that of current high-performance ion sources.


Subject(s)
Models, Chemical , Plasma Gases/chemistry , Cold Temperature , Computer Simulation , Motion
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 2): 026314, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20866912

ABSTRACT

Recent experiments on a freely evolving dipolar vortex in a homogeneous shallow fluid layer have clearly shown the existence and evolution of complex three-dimensional (3D) flow structures. The present contribution focuses on the 3D structures of a dipolar vortex evolving in a stable shallow two-layer fluid. Experimentally, Stereoscopic Particle Image Velocimetry is used to measure instantaneously all three components of the velocity field in a horizontal plane and 3D numerical simulations provide the full 3D velocity and vorticity fields over the entire flow domain. Remarkably, the experimental results, supported by the numerical simulations, show to a large extent the same 3D structures and evolution as in the single-layer case. The numerical simulations indicate that the so-called frontal circulation in the two-layer fluid is due to deformations of the internal interface. The 3D flow structures will also affect the distribution of massless passive particles released at the free surface. With numerical studies it is shown that these passive particles tend to accumulate or deplete locally where the horizontal velocity field is not divergence-free. This is in contrast with pure two-dimensional incompressible flows where the divergence of the velocity field is zero by definition.

3.
Phys Rev Lett ; 88(1): 014802, 2002 Jan 07.
Article in English | MEDLINE | ID: mdl-11800957

ABSTRACT

A new regime of laser wakefield acceleration of an injected electron bunch is described. In this regime, the bunch charge is so high that the bunch wakefields play an important role in the bunch dynamics. In particular, the transverse bunch wakefield induces a strong self-focusing that suppresses the transverse emittance growth arising from misalignment errors. The decelerating longitudinal bunch wakefield, however, is not so strong that it completely cancels the accelerating laser wakefield. In fact, the induced energy spread can be compensated by exploiting phase slippage effects. These features make the new regime interesting for high beam quality laser wakefield acceleration.

SELECTION OF CITATIONS
SEARCH DETAIL
...