Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Haemophilia ; 20(2): 294-300, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24261554

ABSTRACT

Discrepancies exist for some of the modified coagulation factors when assayed with different one-stage clotting and chromogenic substrate assay reagents. The aim of this study was to evaluate the performance of a recombinant factor VIII Fc fusion protein (rFVIIIFc), currently in clinical development for the treatment of severe haemophilia A, in a variety of one-stage clotting and chromogenic substrate assays in clinical haemostasis laboratories. Haemophilic plasma samples spiked with rFVIIIFc or Advate(®) at 0.05, 0.20 or 0.80 IU mL(-1) were tested by 30 laboratories using their routine procedures and plasma standards. Data were evaluated for intra- and inter-laboratory variation, accuracy and possible rFVIIIFc-specific assay discrepancies. For the one-stage assay, mean recovery was 95% to 100% of expected for both Advate(®) and rFVIIIFc at 0.8 IU mL(-1). Intra-laboratory percent coefficient of variance (CV) ranged from 6.3% to 7.8% for Advate(®), and 6.0% to 10.3% for rFVIIIFc. Inter-laboratory CV ranged from 10% for Advate(®) and 16% for rFVIIIFc at 0.8 IU mL(-1), to over 30% at 0.05 IU mL(-1) for both products. For the chromogenic substrate assay, the average FVIII recovery was 107% ± 5% and 124% ± 8% of label potency across the three concentrations of Advate(®) and rFVIIIFc, respectively. Plasma rFVIIIFc levels can be monitored by either the one-stage or the chromogenic substrate assay routinely performed in clinical laboratories without the need for a product-specific rFVIIIFc laboratory standard. Accuracy by the one-stage assay was comparable to that of Advate(®), while marginally higher results may be observed for rFVIIIFc when using the chromogenic assay.


Subject(s)
Blood Coagulation Tests/methods , Factor VIII/metabolism , Hemophilia A/blood , Recombinant Proteins/blood , Blood Coagulation Tests/standards , Factor VIII/therapeutic use , Hemophilia A/drug therapy , Humans , Reagent Kits, Diagnostic , Recombinant Proteins/therapeutic use , Reproducibility of Results , Sensitivity and Specificity
2.
Cancer Res ; 60(9): 2520-6, 2000 May 01.
Article in English | MEDLINE | ID: mdl-10811134

ABSTRACT

Vascular basement membrane is an important structural component of blood vessels and has been shown to interact with and modulate vascular endothelial behavior during angiogenesis. During the inductive phase of tumor angiogenesis, this membrane undergoes many degradative and structural changes and reorganizes to a native state around newly formed capillaries in the resolution phase. Such matrix changes are potentially associated with molecular modifications that include expression of matrix gene products coupled with conformational changes, which expose cryptic protein modules for interaction with the vascular endothelium. We speculate that these interactions provide important endogenous angiogenic and anti-angiogenic cues. In this report, we identify an important antiangiogenic vascular basement membrane-associated protein, the 26-kDa NC1 domain of the alpha1 chain of type IV collagen, termed arresten. Arresten was isolated from human placenta and produced as a recombinant molecule in Escherichia coli and 293 embryonic kidney cells. We demonstrate that arresten functions as an anti-angiogenic molecule by inhibiting endothelial cell proliferation, migration, tube formation, and Matrigel neovascularization. Arresten inhibits the growth of two human xenograft tumors in nude mice and the development of tumor metastases. Additionally, we show that the anti-angiogenic activity of arresten is potentially mediated via mechanisms involving cell surface proteoglycans and the alpha1beta1 integrin on endothelial cells. Collectively, our results suggest that arresten is a potent inhibitor of angiogenesis with a potential for therapeutic use.


Subject(s)
Basement Membrane/metabolism , Collagen/metabolism , Endothelium, Vascular/metabolism , Neovascularization, Pathologic/pathology , Animals , Arrestin/metabolism , Cell Cycle , Cell Line , Collagen/biosynthesis , Collagen/chemistry , Collagen Type XVIII , Dose-Response Relationship, Drug , Drug Combinations , Endostatins , Enzyme-Linked Immunosorbent Assay , Escherichia coli/metabolism , Heparan Sulfate Proteoglycans/metabolism , Humans , Immunohistochemistry , Kinetics , Laminin/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasm Transplantation , Peptide Fragments/biosynthesis , Placenta/metabolism , Plasmids , Protein Structure, Tertiary , Proteoglycans/metabolism , Recombinant Proteins/metabolism , Tumor Cells, Cultured
3.
J Biol Chem ; 275(2): 1209-15, 2000 Jan 14.
Article in English | MEDLINE | ID: mdl-10625665

ABSTRACT

We isolated and identified an endogenous 24-kDa human basement membrane-derived inhibitor of angiogenesis and tumor growth, termed canstatin. Canstatin, a fragment of the alpha2 chain of type IV collagen, was produced as a recombinant molecule in Escherichia coli and 293 embryonic kidneys cells. Canstatin significantly inhibited human endothelial cell migration and murine endothelial cell tube formation. Additionally, canstatin potently inhibited 10% fetal bovine serum-stimulated endothelial cell proliferation and induced apoptosis, with no inhibition of proliferation or apoptosis observed on non-endothelial cells. Inhibition of endothelial proliferation was not concomitant with a change in extracellular signal-regulated kinase activation. We demonstrate that apoptosis induced by canstatin was associated with a down-regulation of the anti-apoptotic protein, FLIP. Canstatin also suppressed in vivo growth of large and small size tumors in two human xenograft mouse models with histology revealing decreased CD31-positive vasculature. Collectively, these results suggest that canstatin is a powerful therapeutic molecule for suppressing angiogenesis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Collagen/pharmacology , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Neovascularization, Physiologic/drug effects , Animals , Apoptosis/drug effects , Cattle , Cell Division/drug effects , Cell Line , Cell Movement/drug effects , Cells, Cultured , Cloning, Molecular/methods , Collagen/biosynthesis , Collagen/chemistry , Collagen/genetics , Endothelium, Vascular/drug effects , Escherichia coli , Humans , Mice , Pulmonary Artery , Recombinant Proteins/pharmacology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...