Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 88(12): 3153-63, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18229849

ABSTRACT

Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more active soil communities, affect soil aggregation, water dynamics, or nutrient cycling, and whether plant diversity and elevated CO2 interact. Nitrogen (N) and phosphorus (P) pools, symbiotic N2 fixation, plant litter quality, soil moisture, soil physical structure, soil nematode, collembola and acari communities, soil microbial biomass and microflora community structure (phospholipid fatty acid [PLFA] profiles), soil enzyme activities, and rates of C fluxes to soils were measured. No increases in soil C fluxes or the biomass, number, or activity of soil organisms were detected at high plant diversity; soil H2O and aggregation remained unaltered. Elevated CO2 affected the ecosystem primarily by improving plant and soil water status by reducing leaf conductance, whereas changes in C cycling appeared to be of subordinate importance. Slowed-down soil drying cycles resulted in lower soil aggregation under elevated CO2. Collembola benefited from extra soil moisture under elevated CO2, whereas other faunal groups did not respond. Diversity effects and interactions with elevated CO2 may have been absent because soil responses were mainly driven by community-level processes such as rates of organic C input and water use; these drivers were not changed by plant diversity manipulations, possibly because our species diversity gradient did not extend below five species and because functional type composition remained unaltered. Our findings demonstrate that global change can affect soil aggregation, and we advocate that soil aggregation should be considered as a dynamic property that may respond to environmental changes and feed back on other ecosystem functions.


Subject(s)
Biodiversity , Carbon Dioxide/metabolism , Ecosystem , Plants/metabolism , Soil Microbiology , Biomass , Carbon/metabolism , Carbon Dioxide/analysis , Nitrogen/analysis , Nitrogen/metabolism , Oxygen Consumption , Phosphorus/analysis , Phosphorus/metabolism , Soil/analysis , Soil/parasitology , Species Specificity , Water/analysis , Water/metabolism
2.
Science ; 280(5362): 441-3, 1998 Apr 17.
Article in English | MEDLINE | ID: mdl-9545223

ABSTRACT

In model terrestrial ecosystems maintained for three plant generations at elevated concentrations of atmospheric carbon dioxide, increases in photosynthetically fixed carbon were allocated below ground, raising concentrations of dissolved organic carbon in soil. These effects were then transmitted up the decomposer food chain. Soil microbial biomass was unaffected, but the composition of soil fungal species changed, with increases in rates of cellulose decomposition. There were also changes in the abundance and species composition of Collembola, fungal-feeding arthropods. These results have implications for long-term feedback processes in soil ecosystems that are subject to rising global atmospheric carbon dioxide concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...