Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 131(2): 532-40.e1-2, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22704539

ABSTRACT

BACKGROUND: Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. OBJECTIVE: In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. METHODS: Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. RESULTS: We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. CONCLUSION: These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Neutrophils/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Actins/metabolism , Capillary Permeability/drug effects , Capillary Permeability/physiology , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytochalasin B/pharmacology , Dinoprostone/metabolism , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Humans , Lung/drug effects , Lung/metabolism , Methyl Ethers/pharmacology , Microvessels/drug effects , Microvessels/immunology , Microvessels/metabolism , Naphthalenes/pharmacology , Neutrophils/drug effects , Neutrophils/immunology , Nitric Oxide Synthase Type III/metabolism , Phenylbutyrates/pharmacology , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Wound Healing/drug effects , Wound Healing/physiology , rac1 GTP-Binding Protein/metabolism
2.
PLoS One ; 7(3): e33329, 2012.
Article in English | MEDLINE | ID: mdl-22442685

ABSTRACT

Prostaglandin H(1) (PGH(1)) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as "anti-inflammatory". Herein we present evidence that PGH(1) is a potent activator of the pro-inflammatory PGD(2) receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca(2+) flux studies reveal that PGH(1) activates CRTH2 as PGH(2), PGD(2) or PGD(1) do. The PGH(1) precursor DGLA and the other PGH(1) metabolites did not display such effect. PGH(1) specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH(1) is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH(1) mediates migration of and Ca(2+) flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH(1) as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase.


Subject(s)
Endothelial Cells/metabolism , Prostaglandins H/metabolism , Receptors, Immunologic/agonists , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/agonists , Receptors, Prostaglandin/metabolism , Th2 Cells/metabolism , Calcium Signaling/genetics , Female , HEK293 Cells , Humans , Hypersensitivity/drug therapy , Hypersensitivity/genetics , Hypersensitivity/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lipocalins/genetics , Lipocalins/metabolism , Male , Prostaglandins H/genetics , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...