Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 29(10): 103151, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31675812

ABSTRACT

In future power systems, electrical storage will be the key technology for balancing feed-in fluctuations. With increasing share of renewables and reduction of system inertia, the focus of research expands toward short-term grid dynamics and collective phenomena. Against this backdrop, Kuramoto-like power grids have been established as a sound mathematical modeling framework bridging between the simplified models from nonlinear dynamics and the more detailed models used in electrical engineering. However, they have a blind spot concerning grid components, which cannot be modeled by oscillator equations, and hence do not allow one to investigate storage-related issues from scratch. Our aim here is twofold: First, we remove this shortcoming by adopting a standard practice in electrical engineering and bring together Kuramoto-like and algebraic load-flow equations. This is a substantial extension of the current Kuramoto-like framework with arbitrary grid components. Second, we use this concept and demonstrate the implementation of a storage unit in a wind power application with realistic feed-in conditions. We show how to implement basic control strategies from electrical engineering, give insights into their potential with respect to frequency quality improvement, and point out their limitations by maximum capacity and finite-time response. With that, we provide a solid starting point for the integration of flexible storage units into Kuramoto-like grid models enabling to address current problems like smart storage control, optimal siting, and rough cost estimations.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 066301, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19658588

ABSTRACT

We present a formal connection between Lagrangian and Eulerian velocity increment distributions which is applicable to a wide range of turbulent systems ranging from turbulence in incompressible fluids to magnetohydrodynamic turbulence. For the case of the inverse cascade regime of two-dimensional turbulence we numerically estimate the transition probabilities involved in this connection. In this context we are able to directly identify the processes leading to strongly non-Gaussian statistics for the Lagrangian velocity increments.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 2): 036321, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18851157

ABSTRACT

We report on simulations of two-dimensional turbulence in the inverse energy cascade regime. Focusing on the statistics of Lagrangian tracer particles, scaling behavior of the probability density functions of velocity fluctuations is investigated. The results are compared to the three-dimensional case. In particular an analysis in terms of compensated cumulants reveals the transition from a strong non-Gaussian behavior with large tails to Gaussianity. The reported computation of correlation functions for the acceleration components sheds light on the underlying dynamics of the tracer particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...