Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 39(5): 1482-92, 2011 May.
Article in English | MEDLINE | ID: mdl-21267657

ABSTRACT

A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.


Subject(s)
Brain/physiology , Computers , Models, Biological , User-Computer Interface , Humans
2.
Article in English | MEDLINE | ID: mdl-22255799

ABSTRACT

We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.


Subject(s)
Brain/physiology , Imagination , Adult , Algorithms , Analysis of Variance , Computers , Electroencephalography/methods , Equipment Design , Female , Hand/physiology , Humans , Male , Models, Theoretical , Neural Networks, Computer , Reproducibility of Results , Toes/physiology , Tongue/physiology , User-Computer Interface
3.
Article in English | MEDLINE | ID: mdl-21097232

ABSTRACT

We here studied the efficacy of wide-band frequency spectra (WBFS) features using multi-taper (MT) spectral analysis in application to motor imagery based Brain Computer Interfaces. We acquired motor imagery task related human scalp electroencephalography (EEG) signals for left vs. right hand movements using 3 different pairs of visual arrow cues. Left vs. right movement imagery discrimination was conducted using a Naïve Bayesian classifier using WBFS features and commonly used Mu-Beta spectral features for EEG signals from central+parietal and central only electrode positions. Task discrimination accuracy results showed that WBFS features using MT spectral analysis provided significantly better performance (with a 95% confidence level) than that of using Mu-Beta spectral features commonly used. The use of central+parietal electrode signals improved discrimination accuracy significantly when compared to the accuracy using the central only signals, implying that sensory information enhanced task discrimination significantly.


Subject(s)
Electroencephalography/methods , Evoked Potentials, Motor/physiology , Imagination/physiology , Motor Cortex/physiology , Movement/physiology , Pattern Recognition, Automated/methods , User-Computer Interface , Adolescent , Adult , Algorithms , Discriminant Analysis , Female , Humans , Male , Young Adult
4.
Med Biol Eng Comput ; 48(4): 331-41, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20112135

ABSTRACT

Noninvasive brain-computer interfaces (BCI) translate subject's electroencephalogram (EEG) features into device commands. Large feature sets should be down-selected for efficient feature translation. This work proposes two different feature down-selection algorithms for BCI: (a) a sequential forward selection; and (b) an across-group variance. Power rar ratios (PRs) were extracted from the EEG data for movement imagery discrimination. Event-related potentials (ERPs) were employed in the discrimination of cue-evoked responses. While center-out arrows, commonly used in calibration sessions, cued the subjects in the first experiment (for both PR and ERP analyses), less stimulating arrows that were centered in the visual field were employed in the second experiment (for ERP analysis). The proposed algorithms outperformed other three popular feature selection algorithms in movement imagery discrimination. In the first experiment, both algorithms achieved classification errors as low as 12.5% reducing the feature set dimensionality by more than 90%. The classification accuracy of ERPs dropped in the second experiment since centered cues reduced the amplitude of cue-evoked ERPs. The two proposed algorithms effectively reduced feature dimensionality while increasing movement imagery discrimination and detected cue-evoked ERPs that reflect subject attention.


Subject(s)
Attention/physiology , Imagination/physiology , Movement/physiology , User-Computer Interface , Adult , Algorithms , Brain/physiology , Discrimination, Psychological/physiology , Electroencephalography/methods , Evoked Potentials/physiology , Female , Humans , Male
5.
Article in English | MEDLINE | ID: mdl-19964437

ABSTRACT

What is the optimal number of electrodes one can use in discrimination of tasks for a Brain Computer Interface (BCI)? To address this question, the number and location of scalp electrodes in the acquisition of human electroencephalography (EEG) and discrimination of motor imagery tasks were optimized by using a systematic optimization approach. The systematic analysis results in the most reliable procedure in electrode optimization as well as a validating means for the other feature selection techniques. We acquired human scalp EEG in response to cue-based motor imagery tasks. We employed a systematic analysis by using all possible combinations of the channels and calculating task discrimination errors for each of these combinations by using linear discriminant analysis (LDA) for feature classification. Channel combination that resulted in the smallest discrimination error was selected as the optimum number of channels to be used in BCI applications. Results from the systematic analysis were compared with another feature selection algorithm: forward stepwise feature selection combined with LDA feature classification. Our results demonstrate the usefulness of the fully optimized technique for a reliable selection of scalp electrodes in BCI applications.


Subject(s)
Electrodes , Electroencephalography/instrumentation , Evoked Potentials, Motor/physiology , Imagination/physiology , Motor Cortex/physiology , Movement/physiology , User-Computer Interface , Electroencephalography/methods , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
6.
Article in English | MEDLINE | ID: mdl-19163711

ABSTRACT

Novel model based features are introduced in the discrimination of motor imagery tasks using human scalp electroencephalography (EEG) towards the development of Brain Computer Interfaces (BCI). We have acquired human scalp EEG under open-loop and feedback conditions in response to cue-based motor imagery tasks. EEG signals, transformed into frequency specific bands such as mu, beta and movement related potentials, were used for feature extraction with the aim to discriminate tasks. Data were classified using features such as power spectrum and model-based parameters. Two different feature selection methods: stepwise and principal component analysis (PCA), were combined with linear discriminant analysis (LDA). Different training/validation criteria were applied for classification of task related features. Results show that the scalp EEG correlate of the imagery tasks of hands/toes/tongue movements under open-loop conditions and left/right hand movements under feedback conditions, can be well discriminated with classification errors below 20%. Model based techniques, which resulted in classification errors in the range of 2%-30%, have the potential to use advanced control systems theory in the development of BCI to achieve improved performance compared to the performance achieved by currently applied proportional control or filter algorithms.


Subject(s)
Brain/physiology , Electroencephalography/methods , Movement/physiology , Adult , Electroencephalography/classification , Electroencephalography/instrumentation , Female , Humans , Linear Models , Male , Models, Theoretical , Regression Analysis , Reproducibility of Results , Software , User-Computer Interface
7.
Article in English | MEDLINE | ID: mdl-18002512

ABSTRACT

The aim of this study is to compare 2 EEG pattern classification methods towards the development of BCI. The methods are: (1) discriminant stepwise, and (2) Principal Component Analysis (PCA)-Linear Discriminant Analysis (LDA) joint method. Both methods use Fisher's LDA approach, but differ in the data dimensionality reduction procedure. Data were recorded from 3 male subjects 20-30 years old. Three runs per subject took place. The classification methods were tested in 240 trials per subject after merging all runs for the same subject. The mental tasks performed were feet, tongue, left hand and right hand movement imagery. In order to avoid previous assumptions on preferable channel locations and frequency ranges, 105 (21 electrodesx5 frequency ranges) electroencephalogram (EEG) features were extracted from the data. The best performance for each classification method was taken into account. The discriminant stepwise method showed better performance than the PCA based method. The classification error by the stepwise method varied between 31.73% and 38.5% for all subjects whereas the error range using the PCA based method was 39.42% to 54%.


Subject(s)
Algorithms , Brain/physiology , Electroencephalography/methods , Movement/physiology , User-Computer Interface , Adolescent , Adult , Electroencephalography/classification , Electroencephalography/instrumentation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...