Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e18295, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539232

ABSTRACT

This study evaluated the effects of different parts of M. paniculata (MP) extracts on convulsions and antioxidant activities in mice. Six polyphenolic compounds were identified, where epicatechin and quercetin have been identified in the highest amounts (23.01 and 32.23 mg/100 g of dry MP extract, respectively) in MP leaf and stem extracts, using Ultra Performance Liquid Chromatography. 7-day oral administration of MP at doses of 100, 200, and 400 mg/kg body weight (BW) significantly reduced convulsions and reduced mortality rates compared with seizure inducer groups. Antioxidant potentials were measured by superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH) content in whole-brain homogenates. Gamma-aminobutyric acid (GABA) levels significantly increased in leaves and stem-treated groups, suggesting that MP leaves and stems have potent antioxidant properties that can attenuate convulsions by modulating the GABAergic system and antioxidant activities.

2.
Br J Pharmacol ; 167(1): 109-27, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22471932

ABSTRACT

BACKGROUND AND PURPOSE: Ginsenosides are the main constituents for the pharmacological effects of Panax ginseng. Such effects of ginsenosides including cardioprotective and anti-platelet activities have shown stability and bioavailability limitations. However, information on the anti-platelet activity of ginsenoside-Rp1 (G-Rp1), a stable derivative of ginsenoside-Rg3, is scarce. We examined the ability of G-Rp1 to modulate agonist-induced platelet activation. EXPERIMENTAL APPROACH: G-Rp1 in vitro and ex vivo effects on agonist-induced platelet-aggregation, granule-secretion, [Ca(2+) ](i) mobilization, integrin-α(IIb) ß(3) activation were examined. Vasodilator-stimulated phosphoprotein (VASP) and MAPK expressions and levels of tyrosine phosphorylation of the glycoprotein VI (GPVI) signalling pathway components were also studied. G-Rp1 effects on arteriovenous shunt thrombus formation in rats or tail bleeding time and ex vivo coagulation time in mice were determined. KEY RESULT: G-Rp1 markedly inhibited platelet aggregation induced by collagen, thrombin or ADP. While G-Rp1 elevated cAMP levels, it dose-dependently suppressed collagen-induced ATP-release, thromboxane secretion, p-selectin expression, [Ca(2+) ](i) mobilization and α(IIb) ß(3) activation and attenuated p38(MAPK) and ERK2 activation. Furthermore, G-Rp1 inhibited tyrosine phosphorylation of multiple components (Fyn, Lyn, Syk, LAT, PI3K and PLCγ2) of the GPVI signalling pathway. G-Rp1 inhibited in vivo thrombus formation and ex vivo platelet aggregation and ATP secretion without affecting tail bleeding time and coagulation time, respectively. CONCLUSION AND IMPLICATIONS: G-Rp1 inhibits collagen-induced platelet activation and thrombus formation through modulation of early GPVI signalling events, and this effect involves VASP stimulation, and ERK2 and p38(-MAPK) inhibition. These data suggest that G-Rp1 may have therapeutic potential for the treatment of cardiovascular diseases involving aberrant platelet activation.


Subject(s)
Ginsenosides/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Membrane Glycoproteins/metabolism , Tyrosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Blood Coagulation/drug effects , Calcium/metabolism , Cell Adhesion Molecules/metabolism , Collagen/pharmacology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , P-Selectin/metabolism , Phosphoproteins/metabolism , Phosphorylation/drug effects , Platelet Aggregation/drug effects , Rats , Rats, Sprague-Dawley , Thrombosis/prevention & control , Thromboxane A2/metabolism
3.
Sensors (Basel) ; 11(5): 4622-47, 2011.
Article in English | MEDLINE | ID: mdl-22163866

ABSTRACT

Classification is one of the data mining problems receiving enormous attention in the database community. Although artificial neural networks (ANNs) have been successfully applied in a wide range of machine learning applications, they are however often regarded as black boxes, i.e., their predictions cannot be explained. To enhance the explanation of ANNs, a novel algorithm to extract symbolic rules from ANNs has been proposed in this paper. ANN methods have not been effectively utilized for data mining tasks because how the classifications were made is not explicitly stated as symbolic rules that are suitable for verification or interpretation by human experts. With the proposed approach, concise symbolic rules with high accuracy, that are easily explainable, can be extracted from the trained ANNs. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and the accuracy. The effectiveness of the proposed approach is clearly demonstrated by the experimental results on a set of benchmark data mining classification problems.


Subject(s)
Data Mining/methods , Neural Networks, Computer , Artificial Intelligence
4.
Phytother Res ; 25(11): 1596-603, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21394810

ABSTRACT

Phellinus baumii is a mushroom that has been used as folk medicine against various diseases and is reported to have antidiabetic, anticancer, antioxidant, antiinflammatory and antihypertensive activities. However, information on the effects of P. baumii extract in platelet function is limited. Therefore, the aim of this study was to examine the impact of a P. baumii methanol extract (PBME) on platelet activation and to investigate the mechanism behind its antiplatelet activity. PBME effects on agonist-induced platelet aggregation, granule secretion, [Ca²âº](i) mobilization, α(IIb) ß3 activation, cyclic AMP release and mitogen-activated protein kinase (MAPK) phosphorylations were studied using rat platelets. PBME dose-dependently inhibited collagen, thrombin and ADP-induced platelet aggregation with an IC50 of 51.0 ± 2.4, 54.0 ± 2.1 and 53.0 ± 4.3 µg/mL, respectively. Likewise, thrombin-induced [Ca²âº](i) and collagen-activated ATP secretions were suppressed in PBME treated platelets. Aggregation and ATP secretion were also markedly attenuated by PBME alone or in combination with PP2 (Src inhibitor) and U-73122 (PLC inhibitor) in collagen-stimulated platelets. Besides, PBME treatment elevated basal cyclic AMP levels and inhibited collagen-induced integrin-α(IIb) ß3 activation. Moreover, PBME attenuated extracellular-signal-regulated protein kinase 2 (ERK2) and c-Jun N-terminal kinase 1 (JNK1) phosphorylations. Further PD98059 (ERK inhibitor) and SP60025 (JNK inhibitor) reduced collagen-induced platelet aggregation and ATP secretion. In conclusion, the observed PBME antiplatelet activity may be mediated by activation of cyclic AMP and inhibition of ERK2 and JNK1 phosphorylations. Finally, these data suggest that PBME may have therapeutic potential for the treatment of cardiovascular diseases that involve aberrant platelet function.


Subject(s)
Basidiomycota/chemistry , Biological Products/pharmacology , Blood Platelets/drug effects , Cyclic AMP/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Platelet Aggregation Inhibitors/pharmacology , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Agaricales/chemistry , Animals , Collagen/antagonists & inhibitors , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Rats , Rats, Sprague-Dawley , Thrombin/antagonists & inhibitors
5.
J Ethnopharmacol ; 130(3): 614-20, 2010 Aug 09.
Article in English | MEDLINE | ID: mdl-20558266

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: B. sarmienti has long been recognized in folk medicine as a medicinal plant with various medicinal uses. Traditionally, it has been appreciated for the skin-healing properties of its essence. The bark has also been employed to treat stomach and cardiovascular disorders and reported to have antitumor, antioxidant and anti-inflammatory activities. However, information on its antiplatelet activity is limited. AIM OF THE STUDY: To examined the effects of B. sarmienti aqueous extract (BSAE) in platelet physiology. MATERIALS AND METHODS: The anti-platelet activity of BSAE was studied using rat platelets for in vitro determination of the extract effect on agonist-induced platelet aggregation, ATP secretion, [Ca(2+)](i) mobilization and MAP kinase phosphorylation. The extract in vivo effects was also examined in arterio-venous shunt thrombus formation in rats, and tail bleeding time in mice. RESULT: HPLC chromatographic analysis revealed that B. sarmienti extract contained (+)-catechin (C), (-)-epigallocatechin (EGC), (-)-epicatechin (EC), and (-)-epicatechin gallate (ECG). BSAE, significantly and dose dependently, inhibited collagen, thrombin, or ADP-induced platelet aggregation. The 50 percent inhibitory concentrations (IC(50)) of the extract for collagen, thrombin and ADP-induced platelet aggregation were 45.3+/-2.6, 100+/-5.6 and 110+/-4.6 microg/ml, respectively. Collagen activated ATP release and thrombin-induced intracellular Ca(2+) concentration were reduced in BSAE-treated platelets. In addition, the extract in vivo activity showed that BSAE at 100 mg/kg significantly attenuated thrombus formation in rat extracorporeal shunt model while mice tail bleeding time was not affected. Moreover, BSAE attenuated p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase 1 (JNK1) and extracellular-signal-regulated protein kinase 2 (ERK2) phosphorylations. CONCLUSION: BSAE inhibits platelet activation, granule secretion, aggregation, and thrombus formation without affecting bleeding time, and that this effect is mediated by inhibition of P38, JNK1 and ERK2 phosphorylations. The ability of BSAE to inhibit platelet function might be relevant in cases involving aberrant platelet activation where the plant extract could be considered as a candidate to anti-platelet and antithrombotic agent.


Subject(s)
Plant Extracts/pharmacology , Platelet Activation/drug effects , Thrombosis/prevention & control , Zygophyllaceae/chemistry , Animals , Bleeding Time/methods , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Male , Medicine, Traditional , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation/drug effects , Plant Extracts/administration & dosage , Platelet Aggregation/drug effects , Rats , Rats, Sprague-Dawley
6.
Eur J Pharmacol ; 627(1-3): 85-91, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-19913011

ABSTRACT

Platelets, though anucleated, possess several transcription factors, including NF-kappaB, that exert non-genomic functions regulating platelet activation. Since platelets have not only been recognized as central players of homeostasis, but also participated in pathological conditions such as thrombosis, atherosclerosis, and inflammation, we examined rat platelet NF-kappaB expression and evaluated the effects of anti-inflammatory drug BAY 11-7082, an inhibitor of NF-kappaB activation, in platelet physiology. Western blotting revealed that rat platelets express NF-kappaB. BAY 11-7082, dose dependently, inhibited collagen- or thrombin-induced-platelet aggregation. ATP release, TXB(2) formation, P-selectin expression, and intercellular Ca(2+) concentration activated by collagen were reduced in BAY 11-7082-treated platelets. BAY 11-7082 elevated intracellular levels of cAMP, but not cGMP, and its co-incubation with cAMP-activating agent (forskolin) or its hydrolyzing enzyme inhibitor (3-isobutyl-1-methylxanthine, IBMX), synergistically inhibited collagen-induced-platelet aggregation. In addition, vasodilator-stimulated-phosphoprotein (VASP) phosphorylation was enhanced in BAY 11-7082-treated platelets, which was partially inhibited by a protein kinase A (PKA) inhibitor, H-89. Moreover, while p38 mitogen-activated protein kinase (MAPK) was not affected, BAY 11-7082 attenuated c-Jun N-terminal kinase 1 (JNK1) and extracellular-signal-regulated protein kinase 2 (ERK2) phosphorylations. In conclusion, BAY 11-7082 inhibits platelet activation, granule secretion, and aggregation, and that this effect is mediated by inhibition of JNK1 and ERK2 phosphorylations, and partially by stimulation of cAMP-dependent PKA VASP phosphorylation. The ability of BAY 11-7082 to inhibit platelet function might be relevant in cases involving aberrant platelet activation where the drug is considered as anti-atherothrombosis, and anti-inflammatory therapy.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Adhesion Molecules/metabolism , Cyclic AMP/metabolism , Microfilament Proteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 8/metabolism , Nitriles/pharmacology , Phosphoproteins/metabolism , Platelet Aggregation/drug effects , Sulfones/pharmacology , Adenosine Triphosphate/metabolism , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Calcium/metabolism , Collagen/pharmacology , Cyclic AMP/biosynthesis , Cyclic GMP/biosynthesis , Cyclic GMP/metabolism , Gene Expression Regulation/drug effects , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , NF-kappa B/metabolism , P-Selectin/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Thrombin/pharmacology , Thromboxane A2/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...