Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18762, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907584

ABSTRACT

Several vaccine programs were introduced during the COVID-19 pandemic, which included inactivated virus, DNA viral vectors and mRNA vaccines. Booster programs are recommended, especially for those in high-risk groups. However, many of these booster programs involve heterologous vaccines. This study enrolled volunteers who first received two full-dose CoronaVac vaccinations before receiving heterologous boosters with DNA- and/or mRNA-vaccines for an additional 2 doses (n = 40) or an additional 3 doses (n = 16). Our results showed no difference in side effects, neutralizing antibodies, or T-cell responses for any of the heterologous vaccination programs. However, the neutralizing capacity and IFN-γ responses against the Omicron variant in volunteers who received 4 or 5 doses were improved. Polarization of peripheral memory T cells after stimulation in all booster groups with Omicron peptide showed an increased trend of naïve and central memory phenotypes of both CD4+ and CD8+ T cells, suggesting that exposure to Omicron antigens will drive T cells into a lymphoid resident T cell phenotype. Our data support a continuous vaccination program to maximize the effectiveness of immunity, especially in people at high risk. Furthermore, the number of boosting doses is important for maintaining immunity.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Antibodies, Neutralizing , Immunity , Antibodies, Viral , Vaccines, Inactivated
2.
Vaccine ; 40(48): 6963-6970, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36283898

ABSTRACT

BACKGROUND: The pandemic coronavirus disease 2019 (COVID-19) is a major global public health concern and several protective vaccines, or preventive/therapeutic approaches have been developed. Sinovac-CoronaVac, an inactivated whole virus vaccine, can protect against severe COVID-19 disease and hospitalization, but less is known whether it elicits long-term T cell responses and provides prolonged protection. METHODS: This is a longitudinal surveillance study of SARS-CoV-2 receptor binding domain (RBD)-specific IgG levels, neutralizing antibody levels (NAb), T cell subsets and activation, and memory B cells of 335 participants who received two doses of CoronaVac. SARS-CoV-2 RBD-specific IgG levels were measured by enzyme-linked immunosorbent assay (ELISA), while NAb were measured against two strains of SARS-CoV-2, the Wuhan and Delta variants. Activated T cells and subsets were identified by flow cytometry. Memory B and T cells were evaluated by enzyme-linked immune absorbent spot (ELISpot). FINDINGS: Two doses of CoronaVac elicited serum anti-RBD antibody response, elevated B cells with NAb capacity and CD4+ T cell-, but not CD8+ T cell-responses. Among the CD4+ T cells, CoronaVac activated mainly Th2 (CD4+ T) cells. Serum antibody levels significantly declined three months after the second dose. INTERPRETATION: CoronaVac mainly activated B cells but T cells, especially Th1 cells, were poorly activated. Activated T cells were mainly Th2 biased, demonstrating development of effector B cells but not long-lasting memory plasma cells. Taken together, these results suggest that protection with CoronaVac is short-lived and that a third booster dose of vaccine may improve protection.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Antibodies, Viral , Vaccination , Antibodies, Neutralizing , Immunoglobulin G/analysis , Th1 Cells , Vaccines, Inactivated
SELECTION OF CITATIONS
SEARCH DETAIL
...