Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Toxicol Appl Pharmacol ; 489: 116995, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38862081

ABSTRACT

Identification of Endocrine-Disrupting Chemicals (EDCs) in a regulatory context requires a high level of evidence. However, lines of evidence (e.g. human, in vivo, in vitro or in silico) are heterogeneous and incomplete for quantifying evidence of the adverse effects and mechanisms involved. To date, for the regulatory appraisal of metabolism-disrupting chemicals (MDCs), no harmonised guidance to assess the weight of evidence has been developed at the EU or international level. To explore how to develop this, we applied a formal Expert Knowledge Elicitation (EKE) approach within the European GOLIATH project. EKE captures expert judgment in a quantitative manner and provides an estimate of uncertainty of the final opinion. As a proof of principle, we selected one suspected MDC -triphenyl phosphate (TPP) - based on its related adverse endpoints (obesity/adipogenicity) relevant to metabolic disruption and a putative Molecular Initiating Event (MIE): activation of peroxisome proliferator activated receptor gamma (PPARγ). We conducted a systematic literature review and assessed the quality of the lines of evidence with two independent groups of experts within GOLIATH, with the objective of categorising the metabolic disruption properties of TPP, by applying an EKE approach. Having followed the entire process separately, both groups arrived at the same conclusion, designating TPP as a "suspected MDC" with an overall quantitative agreement exceeding 85%, indicating robust reproducibility. The EKE method provides to be an important way to bring together scientists with diverse expertise and is recommended for future work in this area.


Subject(s)
Endocrine Disruptors , Organophosphates , Animals , Humans , Endocrine Disruptors/toxicity , Expert Testimony , Organophosphates/toxicity , PPAR gamma/metabolism , PPAR gamma/agonists , Risk Assessment
2.
Toxicol Appl Pharmacol ; 486: 116937, 2024 May.
Article in English | MEDLINE | ID: mdl-38643950

ABSTRACT

Selective Serotonin Reuptake Inhibitors (SSRIs) are widely used medications for the treatment of major depressive disorder. However, long-term SSRI use has been associated with weight gain and altered lipid profiles. These findings suggest that SSRIs may have negative effects on metabolism. Exposure to certain chemicals called 'obesogens' is known to promote lipid accumulation and obesity by modulating adipogenesis. Here, we investigated whether citalopram (CIT) and sertraline (SER) interfere with the process of adipogenesis, using human mesenchymal stem cells (MSCs) in a 2D and a 3D model. Assessment of intracellular lipid accumulation by fluorescence staining was used as a measure for enhanced adipogenesis. To explore possible mechanisms behind SSRIs' effects, receptor mediated activity was studied using responsive cell lines for various nuclear receptors. Furthermore, RNA sequencing was performed in the 3D model, followed by differential gene expression and pathway analysis. A dose dependent increase in lipid accumulation was observed in both models with CIT and SER. For the 3D model, the effect was seen in a range close to reported steady-state plasma concentrations (0.065-0.65 µM for SER and 0.12-0.92 µM for CIT). Pathway analysis revealed unexpected results of downregulation in adipogenesis-related pathways and upregulation in phospholipids and lysosomal pathways. This was confirmed by an observed increase in lysosomes in the 2D model. Our findings suggest lysosomal dysfunction and disrupted lipid metabolism in mature adipocytes, leading to excessive phospholipid synthesis. Moreover, important adipogenic processes are inhibited, potentially leading to dysfunctional adipocytes, which might have implications in the maintenance of a healthy metabolic balance.


Subject(s)
Adipogenesis , Antidepressive Agents , Citalopram , Lipid Metabolism , Mesenchymal Stem Cells , Selective Serotonin Reuptake Inhibitors , Sertraline , Adipogenesis/drug effects , Sertraline/pharmacology , Sertraline/toxicity , Humans , Citalopram/pharmacology , Lipid Metabolism/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/toxicity , Antidepressive Agents/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Cells, Cultured , Dose-Response Relationship, Drug
4.
Front Toxicol ; 5: 1212509, 2023.
Article in English | MEDLINE | ID: mdl-37456981

ABSTRACT

In past times, the analysis of endocrine disrupting properties of chemicals has mainly been focused on (anti-)estrogenic or (anti-)androgenic properties, as well as on aspects of steroidogenesis and the modulation of thyroid signaling. More recently, disruption of energy metabolism and related signaling pathways by exogenous substances, so-called metabolism-disrupting chemicals (MDCs) have come into focus. While general effects such as body and organ weight changes are routinely monitored in animal studies, there is a clear lack of mechanistic test systems to determine and characterize the metabolism-disrupting potential of chemicals. In order to contribute to filling this gap, one of the project within EU-funded Partnership for the Assessment of Risks of Chemicals (PARC) aims at developing novel in vitro methods for the detection of endocrine metabolic disruptors. Efforts will comprise projects related to specific signaling pathways, for example, involving mTOR or xenobiotic-sensing nuclear receptors, studies on hepatocytes, adipocytes and pancreatic beta cells covering metabolic and morphological endpoints, as well as metabolism-related zebrafish-based tests as an alternative to classic rodent bioassays. This paper provides an overview of the approaches and methods of these PARC projects and how this will contribute to the improvement of the toxicological toolbox to identify substances with endocrine disrupting properties and to decipher their mechanisms of action.

5.
Toxicology ; 485: 153411, 2023 02.
Article in English | MEDLINE | ID: mdl-36572169

ABSTRACT

The disruption of thyroid hormone homeostasis by hexabromocyclododecane (HBCD) in rodents is hypothesized to be due to HBCD increasing the hepatic clearance of thyroxine (T4). The extent to which these effects are relevant to humans is unclear. To evaluate HBCD effects on humans, the activation of key hepatic nuclear receptors and the consequent disruption of thyroid hormone homeostasis were studied in different human hepatic cell models. The hepatoma cell line, HepaRG, cultured as two-dimensional (2D), sandwich (SW) and spheroid (3D) cultures, and primary human hepatocytes (PHH) cultured as sandwich were exposed to 1 and 10 µM HBCD and characterized for their transcriptome changes. Pathway enrichment analysis showed that 3D models, followed by SW, had a stronger transcriptome response to HBCD, which is explained by the higher expression of hepatic nuclear receptors but also greater accumulation of HBCD measured inside cells in these models. The Pregnane X receptor pathway is one of the pathways most upregulated across the three hepatic models, followed by the constitutive androstane receptor and general hepatic nuclear receptors pathways. Lipid metabolism pathways had a downregulation tendency in all exposures and in both PHH and the three cultivation modes of HepaRG. The activity of enzymes related to PXR/CAR induction and T4 metabolism were evaluated in the three different types of HepaRG cultures exposed to HBCD for 48 h. Reference inducers, rifampicin and PCB-153 did affect 2D and SW HepaRG cultures' enzymatic activity but not 3D. HBCD did not induce the activity of any of the studied enzymes in any of the cell models and culture methods. This study illustrates that for nuclear receptor-mediated T4 disruption, transcriptome changes might not be indicative of an actual adverse effect. Clarification of the reasons for the lack of translation is essential to evaluate new chemicals' potential to be thyroid hormone disruptors by altering thyroid hormone metabolism.


Subject(s)
Liver , Transcriptome , Humans , Hepatocytes , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Thyroid Hormones/metabolism
6.
Environ Res ; 204(Pt A): 111904, 2022 03.
Article in English | MEDLINE | ID: mdl-34418449

ABSTRACT

Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.


Subject(s)
Endocrine Disruptors , Animals , Animals, Wild , Biological Assay , Endocrine Disruptors/toxicity , Endocrine System , Humans , Obesity
7.
PLoS One ; 16(8): e0256667, 2021.
Article in English | MEDLINE | ID: mdl-34428250

ABSTRACT

Adverse health outcomes of ionizing radiation given chronically at low dose rates are highly debated, a controversy also relevant for other stressors. Increased knowledge is needed for a more comprehensive understanding of the damaging potential of ionizing radiation from all dose rates and doses. There is a lack of relevant low dose rate data that is partly ascribed to the rarity of exposure facilities allowing chronic low dose rate exposures. Using the FIGARO facility, we assessed early (one day post-radiation) and late (recovery time of 100-200 days) hepatic genome-wide transcriptional profiles in male mice of two strains (CBA/CaOlaHsd and C57BL/6NHsd) exposed chronically to a low dose rate (2.5 mGy/h; 1200h, LDR), a mid-dose rate (10 mGy/h; 300h, MDR) and acutely to a high dose rate (100 mGy/h; 30h, HDR) of gamma irradiation, given to an equivalent total dose of 3 Gy. Dose-rate and strain-specific transcriptional responses were identified. Differently modulated transcriptional responses across all dose rate exposure groups were evident by the representation of functional biological pathways. Evidence of changed epigenetic regulation (global DNA methylation) was not detected. A period of recovery markedly reduced the number of differentially expressed genes. Using enrichment analysis to identify the functional significance of the modulated genes, perturbed signaling pathways associated with both cancer and non-cancer effects were observed, such as lipid metabolism and inflammation. These pathways were seen after chronic low dose rate and were not restricted to the acute high dose rate exposure. The transcriptional response induced by chronic low dose rate ionizing radiation suggests contribution to conditions such as cardiovascular diseases. We contribute with novel genome wide transcriptional data highlighting dose-rate-specific radiation responses and emphasize the importance of considering both dose rate, duration of exposure, and variability in susceptibility when assessing risks from ionizing radiation.


Subject(s)
Gamma Rays , Radiation, Ionizing , Transcription, Genetic/drug effects , Animals , DNA Methylation/radiation effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Oxidative Stress/radiation effects , Radiation Dosage
8.
Aquat Toxicol ; 237: 105882, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34139397

ABSTRACT

Complex mixtures of persistent organic pollutants (POPs) are regularly detected in the environment and animal tissues. Often these chemicals are associated with latent effects following early-life exposures, following the developmental origin of health and disease paradigm. We investigated the long-term effects of a human relevant mixture of 29 POPs on adult zebrafish following a developmental exposure, in addition to a single PFOS exposure for comparison, as it was the compound with the highest concentration within the mixture. Zebrafish embryos were exposed from 6 to 96 h post fertilization to x10 and x70 the level of POP mixture or PFOS (0.55 and 3.83 µM) found in human blood before being transferred to clean water. We measured growth, swimming performance, and reproductive output at different life stages. In addition, we assessed anxiety behavior of the adults and their offspring, as well as performing a transcriptomic analysis on the adult zebrafish brain, as the POP mixture and PFOS concentrations used are known to affect larval behavior. Exposure to POP mixture and PFOS reduced swimming performance and increased length and weight, compared to controls. No effect of developmental exposure was observed on reproductive output or anxiety behavior. Additionally, RNA-seq did not reveal pathways related to anxiety although pathways related to synapse biology were affected at the x10 PFOS level. Furthermore, pathway analysis of the brain transcriptome of adults exposed as larvae to the low concentration of PFOS revealed enrichment in pathways such as calcium, MAPK, and GABA signaling, all of which are important for learning and memory. Based on our results we can conclude that some effects on the endpoints measured were apparent, but if these effects lead to adversities at population levels remains elusive.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/toxicity , Animals , Body Weight , Fluorocarbons/toxicity , Humans , Reproduction , Swimming , Water Pollutants, Chemical/toxicity , Zebrafish
9.
Sci Total Environ ; 787: 147621, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34000534

ABSTRACT

BACKGROUND: Pregnant women and their fetuses are exposed to multiple toxic metals that together with variations in essential element levels may alter epigenetic regulation, such as DNA methylation. OBJECTIVES: The aim of the study was to investigate the associations between gestational levels of toxic metals and essential elements and mixtures thereof, with global DNA methylation levels in pregnant women and their newborn children. METHODS: Using 631 mother-child pairs from a prospective birth cohort (The Norwegian Mother, Father and Child Cohort Study), we measured maternal blood concentration (gestation week ~18) of five toxic metals and seven essential elements. We investigated associations as individual exposures and two-way interactions, using elastic net regression, and total mixture, using quantile g-computation, with blood levels of 5-methylcytocine (5mC) and 5-hydroxymethylcytosine (5hmC) in mothers during pregnancy and their newborn children (cord blood). Multiple testing was adjusted for using the Benjamini and Hochberg false discovery rate (FDR) approach. RESULTS: The most sensitive marker of DNA methylation appeared to be 5mC levels. In pregnant mothers, elastic net regression indicated associations between 5mC and selenium and lead (non-linear), while in newborns results indicated relationships between maternal selenium, cobalt (non-linear) and mercury and 5mC, as well as copper (non-linear) and 5hmC levels. Several possible two-way interactions were identified (e.g. arsenic and mercury, and selenium and maternal smoking in newborns). None of these findings met the FDR threshold for multiple testing. No net effect was observed in the joint (mixture) exposure-approach using quantile g-computation. CONCLUSION: We identified few associations between gestational levels of several toxic metals and essential elements and global DNA methylation in pregnant mothers and their newborn children. As DNA methylation dysregulation might be a key mechanism in disease development and thus of high importance for public health, our results should be considered as important candidates to investigate in future studies.


Subject(s)
DNA Methylation , Pregnant Women , Cohort Studies , Epigenesis, Genetic , Female , Fetal Blood , Humans , Infant , Infant, Newborn , Maternal Exposure/adverse effects , Norway , Pregnancy , Prospective Studies
10.
Sci Rep ; 11(1): 4142, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602989

ABSTRACT

Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations. Non-coding RNA expression profile was analysed in F1 offspring (5.5 h post-fertilization) by high-throughput sequencing 1 year after parental irradiation (8.7 mGy/h, 5.2 Gy total dose). Using our previous F1-γ genome-wide gene expression data (GSE98539), hundreds of mRNAs were predicted as targets of differentially expressed (DE) miRNAs, involved in pathways such as insulin receptor, NFkB and PTEN signalling, linking to apoptosis and cancer. snRNAs belonging to the five major spliceosomal snRNAs were down-regulated in the F1-γ group, Indicating transcriptional and post-transcriptional alterations. In addition, DEpiRNA clusters were associated to 9 transposable elements (TEs) (LTR, LINE, and TIR) (p = 0.0024), probable as a response to the activation of these TEs. Moreover, the expression of the lincRNAs malat-1, and several others was altered in the offspring F1, in concordance with previously observed phenotypical alterations. In conclusion, our results demonstrate diverse gamma radiation-induced alterations in the ncRNA profiles of F1 offspring observable 1 year after parental irradiation.


Subject(s)
Gamma Rays/adverse effects , RNA, Untranslated/genetics , Zebrafish/genetics , Animals , DNA Damage/genetics , DNA Damage/radiation effects , DNA Methylation/genetics , DNA Methylation/radiation effects , Gametogenesis/genetics , Gametogenesis/radiation effects , Signal Transduction/genetics , Signal Transduction/radiation effects , Transcriptome/genetics , Transcriptome/radiation effects
11.
J Hazard Mater ; 408: 124490, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33199140

ABSTRACT

A number of epigenetic modulating chemicals are known to affect multiple generations of a population from a single ancestral exposure, thus posing transgenerational hazards. The present study aimed to establish a high-throughput (HT) analytical workflow for cost-efficient concentration-response analysis of epigenetic and phenotypic effects, and to support the development of novel Adverse Outcome Pathway (AOP) networks for DNA methyltransferase (DNMT) inhibitor-mediated transgenerational effects on aquatic organisms. The model DNMT inhibitor 5-azacytidine (5AC) and the model freshwater crustacean Daphnia magna were used to generate new experimental data and served as prototypes to construct AOPs for aquatic organisms. Targeted HT bioassays (DNMT ELISA, MS-HRM and qPCR) in combination with multigenerational ecotoxicity tests revealed concentration-dependent transgenerational (F0-F3) effects of 5AC on total DNMT activity, DNA promoter methylation, gene body methylation, gene transcription and reproduction. Top sensitive toxicity pathways related to 5AC exposure, such as apoptosis and DNA damage responses were identified in both F0 and F3 using Gaussian Bayesian network modeling. Two novel epigenetic AOP networks on DNMT inhibitor mediated one-generational and transgenerational effects were developed for aquatic organisms and assessed for the weight of evidence. The new HT analytical workflow and AOPs can facilitate future ecological hazard assessment of epigenetic modulating chemicals.


Subject(s)
Adverse Outcome Pathways , DNA Methylation , Epigenesis, Genetic , Methyltransferases/antagonists & inhibitors , Animals , Bayes Theorem , DNA , Daphnia
13.
Environ Res ; 190: 109930, 2020 11.
Article in English | MEDLINE | ID: mdl-32738623

ABSTRACT

Ionizing radiation is known to induce oxidative stress and DNA damage as well as epigenetic effects in aquatic organisms. Epigenetic changes can be part of the adaptive responses to protect organisms from radiation-induced damage, or act as drivers of toxicity pathways leading to adverse effects. To investigate the potential roles of epigenetic mechanisms in low-dose ionizing radiation-induced stress responses, an ecologically relevant crustacean, adult Daphnia magna were chronically exposed to low and medium level external 60Co gamma radiation ranging from 0.4, 1, 4, 10, and 40 mGy/h for seven days. Biological effects at the molecular (global DNA methylation, histone modification, gene expression), cellular (reactive oxygen species formation), tissue/organ (ovary, gut and epidermal histology) and organismal (fecundity) levels were investigated using a suite of effect assessment tools. The results showed an increase in global DNA methylation associated with loci-specific alterations of histone H3K9 methylation and acetylation, and downregulation of genes involved in DNA methylation, one-carbon metabolism, antioxidant defense, DNA repair, apoptosis, calcium signaling and endocrine regulation of development and reproduction. Temporal changes of reactive oxygen species (ROS) formation were also observed with an apparent transition from ROS suppression to induction from 2 to 7 days after gamma exposure. The cumulative fecundity, however, was not significantly changed by the gamma exposure. On the basis of the new experimental evidence and existing knowledge, a hypothetical model was proposed to provide in-depth mechanistic understanding of the roles of epigenetic mechanisms in low dose ionizing radiation induced stress responses in D. magna.


Subject(s)
DNA Damage , Daphnia , Animals , Daphnia/genetics , Epigenesis, Genetic , Female , Gamma Rays , Oxidative Stress
14.
Environ Res ; 187: 109702, 2020 08.
Article in English | MEDLINE | ID: mdl-32474314

ABSTRACT

Persistent organic pollutants (POPs) are widespread in the environment and their bioaccumulation can lead to adverse health effects in many organisms. Previously, using zebrafish as a model vertebrate, we found larvae exposed to a mixture of 29 POPs based on average blood levels from the Scandinavian population showed hyperactivity, and identified perfluorooctanesulfonic acid (PFOS) as the driving agent for the behavioral changes. In order to identify possible mechanisms, we exposed zebrafish larvae from 6 to 96 h post fertilization to the same mixture of POPs in two concentrations or a single PFOS exposure (0.55 and 3.83 µM) and performed behavioral tests and transcriptomics analysis. Behavioral alterations of exposed zebrafish larvae included hyperactivity and confirmed previously reported results. Transcriptomics analysis showed upregulation of transcripts related to muscle contraction that is highly regulated by the availability of calcium in the sarcoplasmic reticulum. Ingenuity pathway analysis showed that one of the affected pathways in larvae exposed to the POP mixture and PFOS was calcium signaling via the activation of the ryanodine receptors (RyR). Functional analyses with RyR inhibitors and behavioral outcomes substantiate these findings. Additional pathways affected were related to lipid metabolism in larvae exposed to the lower concentration of PFOS. By using omics technology, we observed that the altered behavioral pattern in exposed zebrafish larvae may be controlled directly by mechanisms affecting muscle function rather than via mechanisms connected to neurotoxicity.


Subject(s)
Environmental Pollutants , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids , Animals , Calcium Signaling , Fluorocarbons/toxicity , Humans , Larva , Water Pollutants, Chemical/toxicity , Zebrafish
15.
Int J Mol Sci ; 21(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423144

ABSTRACT

The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.


Subject(s)
Diabetes Mellitus/epidemiology , Endocrine Disruptors/adverse effects , Fatty Liver/epidemiology , Obesity/epidemiology , Adipocytes/drug effects , Adipocytes/pathology , Diabetes Mellitus/chemically induced , Diabetes Mellitus/prevention & control , Fatty Liver/chemically induced , Fatty Liver/prevention & control , Humans , Metabolic Networks and Pathways/drug effects , Obesity/chemically induced , Obesity/prevention & control , Risk Assessment
16.
Epigenetics Chromatin ; 13(1): 5, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051014

ABSTRACT

BACKGROUND: Recent studies indicate that exposure to environmental chemicals may increase susceptibility to developing metabolic diseases. This susceptibility may in part be caused by changes to the epigenetic landscape which consequently affect gene expression and lead to changes in lipid metabolism. The epigenetic modifier enhancer of zeste 2 (Ezh2) is a histone H3K27 methyltransferase implicated to play a role in lipid metabolism and adipogenesis. In this study, we used the zebrafish (Danio rerio) to investigate the role of Ezh2 on lipid metabolism and chromatin status following developmental exposure to the Ezh1/2 inhibitor PF-06726304 acetate. We used the environmental chemical tributyltin (TBT) as a positive control, as this chemical is known to act on lipid metabolism via EZH-mediated pathways in mammals. RESULTS: Zebrafish embryos (0-5 days post-fertilization, dpf) exposed to non-toxic concentrations of PF-06726304 acetate (5 µM) and TBT (1 nM) exhibited increased lipid accumulation. Changes in chromatin were analyzed by the assay for transposase-accessible chromatin sequencing (ATAC-seq) at 50% epiboly (5.5 hpf). We observed 349 altered chromatin regions, predominantly located at H3K27me3 loci and mostly more open chromatin in the exposed samples. Genes associated to these loci were linked to metabolic pathways. In addition, a selection of genes involved in lipid homeostasis, adipogenesis and genes specifically targeted by PF-06726304 acetate via altered chromatin accessibility were differentially expressed after TBT and PF-06726304 acetate exposure at 5 dpf, but not at 50% epiboly stage. One gene, cebpa, did not show a change in chromatin, but did show a change in gene expression at 5 dpf. Interestingly, underlying H3K27me3 marks were significantly decreased at this locus at 50% epiboly. CONCLUSIONS: Here, we show for the first time the applicability of ATAC-seq as a tool to investigate toxicological responses in zebrafish. Our analysis indicates that Ezh2 inhibition leads to a partial primed state of chromatin linked to metabolic pathways which results in gene expression changes later in development, leading to enhanced lipid accumulation. Although ATAC-seq seems promising, our in-depth assessment of the cebpa locus indicates that we need to consider underlying epigenetic marks as well.


Subject(s)
Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Lipid Metabolism , Zebrafish Proteins/metabolism , Adipogenesis , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Chromatin/chemistry , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation Sequencing , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Trialkyltin Compounds/pharmacology , Zebrafish , Zebrafish Proteins/antagonists & inhibitors
17.
Environ Epigenet ; 5(3): dvz016, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31528364

ABSTRACT

The water flea Daphnia magna is a keystone species in freshwater ecosystems and has been widely used as a model organism in environmental ecotoxicology. This aquatic crustacean is sensitive to environmental stressors and displays considerable plasticity in adapting to changing environmental conditions. Part of this plasticity may be due to epigenetic regulation of gene expression, including changes to DNA methylation and histone modifications. Because of the generally hypomethylated genome of this species, we hypothesized that the histone code may have an essential role in the epigenetic control and that histone modifications might be an early marker for stress. This study aims to characterize the epigenetic, transcriptional and phenotypic responses and their causal linkages in directly exposed adult (F0) Daphnia and peritoneal exposed neonates (F1) after a chronic (7-day) exposure to a sublethal concentration (10 mg/l) of 5-azacytidine, a well-studied vertebrate DNA methylation inhibitor. Exposure of the F0 generation significantly reduced the cumulative fecundity, accompanied with differential expression of genes in the one-carbon-cycle metabolic pathway. In the epigenome of the F0 generation, a decrease in global DNA methylation, but no significant changes on H3K4me3 or H3K27me3, were observed. In the F1 offspring generation, changes in gene expression, a significant reduction in global DNA methylation and changes in histone modifications were identified. The results indicate that exposure during adulthood may result in more pronounced effects on early development in the offspring generation, though interpretation of the data should be carefully done since both the exposure regime and developmental period is different in the two generations examined. The obtained results improve our understanding of crustacean epigenetics and the tools developed may promote use of epigenetic markers in hazard assessment of environmental stressors.

18.
Environ Pollut ; 251: 469-483, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31103007

ABSTRACT

The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny. Recent work has begun to show that epigenetics plays an important role in adaptation of organisms challenged to environmental stimulae. Changes to so-called epigenetic marks such as histone modifications, DNA methylation and non-coding RNAs result in altered transcriptomes and proteomes, without directly changing the DNA sequence. Moreover, some of these environmentally-induced epigenetic changes tend to persist over generations, and thus, epigenetic modifications are regarded as the conduits for environmental influence on the genome. Here, we review the current knowledge of possible involvement of epigenetics in the cascade of responses resulting from environmental exposure to ionising radiation. In addition, from a comparison of lab and field obtained data, we investigate evidence on radiation-induced changes in the epigenome and in particular the total or locus specific levels of DNA methylation. The challenges for future research and possible use of changes as an early warning (biomarker) of radiosensitivity and individual exposure is discussed. Such a biomarker could be used to detect and better understand the mechanisms of toxic action and inter/intra-species susceptibility to radiation within an environmental risk assessment and management context.


Subject(s)
DNA Methylation/radiation effects , Epigenesis, Genetic/radiation effects , Radiation Exposure/adverse effects , Radiation, Ionizing , Animals , Animals, Wild/genetics , Ecotoxicology , Humans , Risk Assessment
19.
Sci Rep ; 8(1): 15373, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337673

ABSTRACT

Ionizing radiation is known to cause DNA damage, yet the mechanisms underlying potential transgenerational effects of exposure have been scarcely studied. Previously, we observed effects in offspring of zebrafish exposed to gamma radiation during gametogenesis. Here, we hypothesize that these effects are accompanied by changes of DNA methylation possibly inherited by subsequent generations. We assessed DNA methylation in F1 embryos (5.5 hours post fertilization) with whole genome bisulfite sequencing following parental exposure to 8.7 mGy/h for 27 days and found 5658 differentially methylated regions (DMRs). DMRs were predominantly located at known regulatory regions, such as gene promoters and enhancers. Pathway analysis indicated the involvement of DMRs related to similar pathways found with gene expression analysis, such as development, apoptosis and cancers, which could be linked to previous observed developmental defects and genomic instability in the offspring. Follow up of 19 F1 DMRs in F2 and F3 embryos revealed persistent effects up to the F3 generation at 5 regions. These results indicate that ionizing radiation related effects in offspring can be linked to DNA methylation changes that partly can persist over generations. Monitoring DNA methylation could serve as a biomarker to provide an indication of ancestral exposures to ionizing radiation.


Subject(s)
DNA Methylation , Embryo, Nonmammalian/metabolism , Epigenesis, Genetic/radiation effects , Gene Expression Regulation, Developmental/radiation effects , Radiation, Ionizing , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , DNA Damage , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/radiation effects , Gametogenesis , Genomic Instability , Reproduction , Zebrafish/physiology
20.
Neurotoxicology ; 69: 266-277, 2018 12.
Article in English | MEDLINE | ID: mdl-30056177

ABSTRACT

Dysregulation of neuronal intracellular Ca2+ homeostasis can play a crucial role in many neurotoxic effects, including impaired brain development and behavioral dysfunctions. This study examined 40 suspected neurotoxicants from different chemical classes for their capacity to alter Ca2+ release and uptake from rat cortical microsomes. First, ten suspected neurotoxicants have been tested using a well-established cuvette-based Ca2+ flux assay. Five out of ten compounds (TOCP, endosulfan, PCB-95, chlorpyrifos and BDE-49) showed a significant, concentration-dependent alteration of Ca2+ release and uptake in adult rat cortical microsomes. The original cuvette assay was downscaled and customized to a fast, higher throughput microplate method and the 40 suspected neurotoxicants were screened for their effects on intracellular Ca2+homeostasis. In decreasing order of potency, the 15 test compounds that showed the strongest alteration of Ca2+ levels in adult rat microsomes were TOCP, endosulfan, BDE-49, 6-OH-BDE-47, PCB-95, permethrin, alpha-cypermethrin, chlorpyrifos, bioallethrin, cypermethrin, RDP, DEHP, DBP, BDE-47, and PFOS. Results from co-exposure experiments with selective inhibitors suggested that for some compounds Ca2+ releasing effects could be attributed to RyR activation (PFOS, DBP, and DEHP) or to SERCA inhibition (a potential novel mechanism of action for all four tested pyrethroid insecticides). The effects of the two most potent compounds, endosulfan and TOCP, were not blocked by any of the inhibitors tested, indicating other possible mechanism of action. For all other potent test compounds, a combined effect on RyR, IP3R, and/or SERCA has been observed. PFOS and 6-OH-BDE-47 caused increased Ca2+ release from adult but not from neonatal rat brain microsomes, indicating age-dependent difference in susceptibility to these test compounds. The current study suggests that the neurotoxic potential of compounds belonging to different chemical classes could partly be attributed to the effects on intracellular Ca2+ release and uptake. Although further validation is required, the downscaled method developed in this study presents technical advance that could be used for the future screening of suspected intracellular Ca2+ disruptors.


Subject(s)
Calcium/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Environmental Pollutants/toxicity , Microsomes/drug effects , Microsomes/metabolism , Animals , Female , Rats , Rats, Wistar , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...