Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Invest Dermatol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762064

ABSTRACT

Cutaneous T-cell lymphoma is characterized by malignant T cells proliferating in a unique tumor microenvironment dominated by keratinocytes (KCs). Skin colonization and infection by Staphylococcus aureus are a common cause of morbidity and are suspected of fueling disease activity. In this study, we show that expression of HLA-DRs, high-affinity receptors for staphylococcal enterotoxins (SEs), by KCs correlates with IFN-γ expression in the tumor microenvironment. Importantly, IFN-γ induces HLA-DR, SE binding, and SE presentation by KCs to malignant T cells from patients with Sézary syndrome and malignant and nonmalignant T-cell lines derived from patients with Sézary syndrome and mycosis fungoides. Likewise, preincubation of KCs with supernatant from patient-derived SE-producing S aureus triggers proliferation in malignant T cells and cytokine release (including IL-2), when cultured with nonmalignant T cells. This is inhibited by pretreatment with engineered bacteriophage S aureus-specific endolysins. Furthermore, alteration in the HLA-DR-binding sites of SE type A and small interfering RNA-mediated knockdown of Jak3 and IL-2Rγ block induction of malignant T-cell proliferation. In conclusion, we show that upon exposure to patient-derived S aureus and SE, KCs stimulate IL-2Rγ/Jak3-dependent proliferation of malignant and nonmalignant T cells in an environment with nonmalignant T cells. These findings suggest that KCs in the tumor microenvironment play a key role in S aureus-mediated disease activity in cutaneous T-cell lymphoma.

2.
Blood ; 143(15): 1496-1512, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38170178

ABSTRACT

ABSTRACT: Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Sezary Syndrome , Skin Neoplasms , Staphylococcal Infections , Humans , Sezary Syndrome/drug therapy , Sezary Syndrome/pathology , Staphylococcus aureus , NF-kappa B , T-Lymphocytes , Enterotoxins/pharmacology , Lymphoma, T-Cell, Cutaneous/pathology , Receptors, Antigen, T-Cell , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Drug Resistance
3.
J Invest Dermatol ; 143(9): 1757-1768.e3, 2023 09.
Article in English | MEDLINE | ID: mdl-36889662

ABSTRACT

Staphylococcus aureus is suspected to fuel disease activity in cutaneous T-cell lymphomas. In this study, we investigate the effect of a recombinant, antibacterial protein, endolysin (XZ.700), on S. aureus skin colonization and malignant T-cell activation. We show that endolysin strongly inhibits the proliferation of S. aureus isolated from cutaneous T-cell lymphoma skin and significantly decreases S. aureus bacterial cell counts in a dose-dependent manner. Likewise, ex vivo colonization of both healthy and lesional skin by S. aureus is profoundly inhibited by endolysin. Moreover, endolysin inhibits the patient-derived S. aureus induction of IFNγ and the IFNγ-inducible chemokine CXCL10 in healthy skin. Whereas patient-derived S. aureus stimulates activation and proliferation of malignant T cells in vitro through an indirect mechanism involving nonmalignant T cells, endolysin strongly inhibits the effects of S. aureus on activation (reduced CD25 and signal transducer and activator of transcription 5 phosphorylation) and proliferation (reduced Ki-67) of malignant T cells and cell lines in the presence of nonmalignant T cells. Taken together, we provide evidence that endolysin XZ.700 inhibits skin colonization, chemokine expression, and proliferation of pathogenic S. aureus and blocks their potential tumor-promoting effects on malignant T cells.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Staphylococcal Infections , Humans , Staphylococcus aureus , Skin/microbiology , Staphylococcal Infections/microbiology , Lymphoma, T-Cell, Cutaneous/drug therapy , Recombinant Proteins , T-Lymphocytes , Skin Neoplasms/drug therapy , Skin Neoplasms/microbiology
4.
Blood ; 141(2): 180-193, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36122387

ABSTRACT

Cutaneous T-cell lymphoma (CTCL) is a devastating lymphoid malignancy characterized by the accumulation of malignant T cells in the dermis and epidermis. Skin lesions cause serious symptoms that hamper quality of life and are entry sites for bacterial infection, a major cause of morbidity and mortality in advanced diseases. The mechanism driving the pathological processes that compromise the skin barrier remains unknown. Here, we report increased transepidermal water loss and compromised expression of the skin barrier proteins filaggrin and filaggrin-2 in areas adjacent to TOX-positive T cells in CTCL skin lesions. Malignant T cells secrete mediators (including cytokines such as interleukin 13 [IL-13], IL-22, and oncostatin M) that activate STAT3 signaling and downregulate filaggrin and filaggrin-2 expression in human keratinocytes and reconstructed human epithelium. Consequently, the repression of filaggrins can be counteracted by a cocktail of antibodies targeting these cytokines/receptors, small interfering RNA-mediated knockdown of JAK1/STAT3, and JAK1 inhibitors. Notably, we show that treatment with a clinically approved JAK inhibitor, tofacitinib, increases filaggrin expression in lesional skin from patients with mycosis fungoides. Taken together, these findings indicate that malignant T cells secrete cytokines that induce skin barrier defects via a JAK1/STAT3-dependent mechanism. As clinical grade JAK inhibitors largely abrogate the negative effect of malignant T cells on skin barrier proteins, our findings suggest that such inhibitors provide novel treatment options for patients with CTCL with advanced disease and a compromised skin barrier.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Diseases , Skin Neoplasms , Humans , Filaggrin Proteins , Quality of Life , Lymphoma, T-Cell, Cutaneous/pathology , Skin Diseases/pathology , T-Lymphocytes/pathology , Cytokines/metabolism , Skin Neoplasms/pathology
5.
J Invest Dermatol ; 141(10): 2449-2458, 2021 10.
Article in English | MEDLINE | ID: mdl-33862068

ABSTRACT

Staphylococcal enterotoxins are believed to fuel disease activity in cutaneous T-cell lymphoma. Recent data support this by showing that antibiotics inhibit malignant T cells in skin lesions in mycosis fungoides and Sézary syndrome, the most common forms of cutaneous T-cell lymphoma. Yet, it remains incompletely characterized how staphylococcal enterotoxins fuel disease activity. In this study, we show that staphylococcal enterotoxins induce the expression of the oncogenic microRNA miR-155 in primary malignant T cells. Thus, staphylococcal enterotoxins and Staphyloccocus aureus isolates from lesional skin of patients induce miR-155 expression at least partly through the IL-2Rg‒Jak‒signal transducer and activator of transcription 5 pathway, and the effect is augmented by the presence of nonmalignant T cells. Importantly, mycosis fungoides lesions harbor S. aureus, express Y-phosphorylated signal transducer and activator of transcription 5, and display enhanced miR-155 expression, when compared with nonlesional and healthy skin. Preliminary data show that aggressive antibiotic therapy is associated with decreased Y-phosphorylated signal transducer and activator of transcription 5 and miR-155 expression in lesional skin in two patients with Sézary syndrome. In conclusion, we show that S. aureus and its enterotoxins induce enhanced expression of oncogenic miR-155, providing mechanistic insight into the role of S. aureus in cutaneous T-cell lymphoma. Our findings support that environmental stimuli such as bacteria can fuel disease progression in cutaneous T-cell lymphoma.


Subject(s)
Enterotoxins/toxicity , Lymphoma, T-Cell, Cutaneous/etiology , MicroRNAs/physiology , STAT5 Transcription Factor/physiology , Skin Neoplasms/etiology , Staphylococcus aureus/pathogenicity , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Humans
6.
Cells ; 9(11)2020 11 10.
Article in English | MEDLINE | ID: mdl-33182724

ABSTRACT

DNA-damaging cancer therapies induce interferon expression and stimulate the immune system, promoting therapy responses. The immune-activating STING (Stimulator of Interferon Genes) pathway is induced when DNA or double-stranded RNA (dsRNA) is detected in the cell cytoplasm, which can be caused by viral infection or by DNA damage following chemo- or radiotherapy. Here, we investigated the responses of cutaneous T-cell lymphoma (CTCL) cells to the clinically applied DNA crosslinking photochemotherapy (combination of 8-methoxypsoralen and UVA light; 8-MOP + UVA). We showed that this treatment evokes interferon expression and that the type III interferon IFNL1 is the major cytokine induced. IFNL1 upregulation is dependent on STING and on the cytoplasmic DNA sensor cyclic GMP-AMP synthase (cGAS). Furthermore, 8-MOP + UVA treatment induced the expression of genes in pathways involved in response to the tumor necrosis factor, innate immune system and acute inflammatory response. Notably, a subset of these genes was under control of the STING-IFNL1 pathway. In conclusion, our data connected DNA damage with immune system activation via the STING pathway and contributed to a better understanding of the effectiveness of photochemotherapy.


Subject(s)
DNA Damage/physiology , Interferons/metabolism , Photochemotherapy/methods , Cell Line, Tumor , Humans , Transfection , Interferon Lambda
8.
Leuk Lymphoma ; 58(1): 171-178, 2017 01.
Article in English | MEDLINE | ID: mdl-27181628

ABSTRACT

The Notch pathway is important for survival of cutaneous T-cell lymphoma (CTCL) cells. We investigated the effect of chemotherapy (doxorubicin, etoposide, and gemcitabine) and radiation modalities on Notch signaling in CTCL cell lines. Chemotherapy induced Notch1 expression at the mRNA and protein level in MyLa2000 and Hut78. Upregulation of well-established Notch targets supported the functional activity of Notch1. Transfection of Notch1 siRNA into MyLa2000 cells was not able to suppress the effects of chemotherapy on Notch1 activation significantly. Notch1 knockdown in combination with doxorubicin, etoposide, or gemcitabine compared to chemotherapy alone decreased cell viability by 12, 20, and 26%, respectively (p < 0.05). Additionally, X-rays (in MyLa2000 but not SeAx) and psoralen plus UVA (PUVA) (in MyLa2000, Hut78, and SeAx) increased the expression of Notch1 family members. Our results indicate that CTCL cells activate the Notch pathway in vitro in response to chemotherapy and radiation modalities as a possible protective mechanism.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Lymphoma, T-Cell, Cutaneous/drug therapy , RNA, Small Interfering/genetics , Signal Transduction/radiation effects
9.
Int J Radiat Oncol Biol Phys ; 92(1): 138-43, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25863761

ABSTRACT

PURPOSE: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments is limited to 2 to 3 courses in a lifetime due to skin toxicity. This study aimed to determine the clinical effect of low-dose TSEBT in patients with MF and SS. METHODS AND MATERIALS: In an open clinical study, 21 patients with MF/SS stages IB to IV were treated with low-dose TSEBT over <2.5 weeks, receiving a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. RESULTS: The overall response rate was 95% with a complete cutaneous response or a very good partial response rate (<1% skin involvement with patches or plaques) documented in 57% of the patients. Median duration of overall cutaneous response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. CONCLUSIONS: Low-dose (10-Gy) TSEBT offers a high overall response rate and is relatively safe. With this approach, reirradiation at times of relapse or progression is likely to be less toxic than standard dose TSEBT. It remains to be established whether adjuvant and combination treatments can prolong the beneficial effects of low-dose TSEBT.


Subject(s)
Electrons/therapeutic use , Mycosis Fungoides/radiotherapy , Sezary Syndrome/radiotherapy , Skin Neoplasms/radiotherapy , Aged , Aged, 80 and over , Disease-Free Survival , Dose Fractionation, Radiation , Electrons/adverse effects , Female , Humans , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/radiotherapy , Male , Middle Aged , Mycosis Fungoides/pathology , Recurrence , Retreatment/adverse effects , Retreatment/methods , Sezary Syndrome/pathology , Skin Neoplasms/pathology , Treatment Outcome
11.
J Invest Dermatol ; 132(5): 1487-96, 2012 May.
Article in English | MEDLINE | ID: mdl-22377766

ABSTRACT

P53 is rarely mutated in cutaneous T-cell lymphoma (CTCL) and is therefore a promising target for innovative therapeutic approaches. Nutlin-3a is an inhibitor of MDM2 (human homolog of murine double minute 2), which disrupts its interaction with p53, leading to the stabilization and activation of p53. To investigate the potential therapeutic use of nutlin-3a in CTCL, we screened CTCL lines Hut-78, SeAx, MyLa2000, Mac1, and Mac2a by measuring p53 levels after nutlin-3a treatment. In MyLa2000, Mac1, and Mac2a, we observed the increase in p53, indicating the fully functional p53. In the remaining cell lines, P53 mutation analysis identified a homozygous nonsense mutation (R196Stop in Hut-78) and a homozygous missense mutation (G245S in SeAx). In MyLa2000, Mac1, and Mac2a carrying wild-type P53, nutlin-3a induced apoptosis and senescence demonstrated by permanent G0/G1 cell-cycle block and expression of the senescence-associated ß-galactosidase. This effect was abolished in cells in which p53 was silenced by small interfering RNA. Sézary cells lack functional p53 and were resistant to nutlin-3a. However, nutlin-3a potentiated the efficacy of conventional chemotherapeutics not only in cells with intact p53 but also in Hut-78, SeAx, and Sézary cells. Thus, targeting p53 by nutlin-3a may constitute a therapeutic approach in CTCL because of increased apoptosis and senescence of tumor cells.


Subject(s)
Imidazoles/pharmacology , Lymphoma, T-Cell, Cutaneous/genetics , Piperazines/pharmacology , Skin Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle Checkpoints/drug effects , Cellular Senescence/drug effects , Cellular Senescence/genetics , Codon, Nonsense , Humans , Lymphoma, T-Cell, Cutaneous/metabolism , Mutation, Missense , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , RNA, Small Interfering/pharmacology , Skin Neoplasms/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/drug effects
12.
Acta Oncol ; 50(8): 1199-205, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21736502

ABSTRACT

BACKGROUND: Total skin electron beam therapy (TSEBT) is an effective palliative treatment for cutaneous T-cell lymphoma (CTCL). In the present study we reviewed the clinical response to TSEBT in Danish patients with CTCL. MATERIAL AND METHODS: This retrospective study included 35 patients with CTCL treated with TSEBT in Denmark from 2001 to 2008 and followed for a median time of 7.6 months (range 3 days-3.7 years). Twenty five patients were treated with high-dose (30 Gy) and 10 patients in a protocol with low-dose (4 Gy) TSEBT. RESULTS: Patients treated with low-dose therapy had inadequate response to treatment compared to patients treated with high-dose. Consequently the study with low-dose was discontinued and published. In patients treated with high-dose the overall response rate was 100%. Complete response (CR) rate was 68% and CR occurred after a median time of 2.1 months (range 1.8 months-2.0 years). We found no difference in CR rate in patients with T2 (66.7%) and T3 disease (78.6%) (p = 0.64). Following CR 82.4% relapsed at a median time of four months (range 12 days-11.5 months). Relapse-free-survival was similar in patients with T2 and T3 disease (p = 0.77). Progressive disease (PD) was experienced in 28.0% and the median time to PD was 9.0 months (range 4.6-44.3 months). Overall progression-free survival was 95.3%, 72.1% and 64.1% after 0.5-, 1- and 2-years. Effects of initial therapy on TSEBT treatment response and side effects to TSEBT were also analyzed. CONCLUSION: In conclusion, the present study confirms that high-dose TSEBT is an effective, but generally not a curative therapy in the management of CTCL. High-dose treatment yielded significantly better results than low-dose treatment with 4 Gy. TSEBT offers significant palliation in most patients when other skin-directed or systemic treatments have failed.


Subject(s)
Electrons/therapeutic use , Lymphoma, T-Cell, Cutaneous/radiotherapy , Skin Neoplasms/radiotherapy , Adult , Aged , Aged, 80 and over , Cohort Studies , Denmark , Dose-Response Relationship, Radiation , Female , Humans , Male , Middle Aged , Palliative Care/methods , Radiotherapy, High-Energy/methods , Retrospective Studies
13.
Blood ; 116(14): 2504-12, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20538790

ABSTRACT

Deregulation of Notch signaling has been linked to the development of T-cell leukemias and several solid malignancies. Yet, it is unknown whether Notch signaling is involved in the pathogenesis of mycosis fungoides and Sézary syndrome, the most common subtypes of cutaneous T-cell lymphoma. By immunohistochemistry of 40 biopsies taken from skin lesions of mycosis fungoides and Sézary syndrome, we demonstrated prominent expression of Notch1 on tumor cells, especially in the more advanced stages. The γ-secretase inhibitor I blocked Notch signaling and potently induced apoptosis in cell lines derived from mycosis fungoides (MyLa) and Sézary syndrome (SeAx, HuT-78) and in primary leukemic Sézary cells. Specific down-regulation of Notch1 (but not Notch2 and Notch3) by siRNA induced apoptosis in SeAx. The mechanism of apoptosis involved the inhibition of nuclear factor-κB, which is the most important prosurvival pathway in cutaneous T-cell lymphoma. Our data show that Notch is present in cutaneous T-cell lymphoma and that its inhibition may provide a new way to treat cutaneous T-cell lymphoma.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma, T-Cell, Cutaneous/genetics , Mycosis Fungoides/genetics , Receptor, Notch1/genetics , Sezary Syndrome/genetics , Adult , Aged , Aged, 80 and over , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Lymphocytes/metabolism , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/metabolism , Lymphoma, T-Cell, Cutaneous/pathology , Male , Middle Aged , Mycosis Fungoides/drug therapy , Mycosis Fungoides/metabolism , Mycosis Fungoides/pathology , NF-kappa B/metabolism , Protease Inhibitors/pharmacology , RNA Interference , Receptor, Notch1/antagonists & inhibitors , Receptor, Notch1/metabolism , Sezary Syndrome/drug therapy , Sezary Syndrome/metabolism , Sezary Syndrome/pathology , Tumor Cells, Cultured
15.
Dermatol Reports ; 2(1): e8, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-25386244

ABSTRACT

We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa), Sézary syndrome (SeAx), and CD30(+) lympho-proliferative diseases (Mac1, Mac2a, JK). Mac1 and Mac2a had the highest growth rate (doubling time 18-28 h, >90% cycling cells) whereas SeAx was proliferating slowly (doubling time 55 h, approximately 35% cycling cells). Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma.

17.
Int J Radiat Oncol Biol Phys ; 71(4): 1204-7, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18207669

ABSTRACT

PURPOSE: To determine the effect of low-dose (4 Gy) total skin electron beam therapy as a second-line treatment of Stage IB-II mycosis fungoides in a prospective, open-label study. METHODS AND MATERIALS: Ten patients (6 men, 4 women, average age 68.7 years [range, 55-82 years]) with histopathologically confirmed mycosis fungoides T2-T4 N0-N1 M0 who did not achieve complete remission or relapsed within 4 months after treatment with psoralen plus ultraviolet-A were included. Treatment consisted of low-dose total skin electron beam therapy administered at a total skin dose of 4 Gy given in 4 fractions over 4 successive days. RESULTS: Two patients had a complete clinical response but relapsed after 3.5 months. Six patients had partial clinical responses, with a mean duration of 2.0 months. One patient had no clinical response. Median time to relapse was 2.7 months. One patient died of unrelated causes and did not complete treatment. Acute side effects included desquamation, xerosis, and erythema of the skin. No severe side effects were observed. CONCLUSION: Low-dose total skin electron beam therapy can induce complete and partial responses in Stage IB-II mycosis fungoides; however, the duration of remission is short. Low-dose total skin electron beam therapy may find application in palliative treatment of mycosis fungoides because of limited toxicity and the possibility of repeating treatments for long-term disease control.


Subject(s)
Electrons/therapeutic use , Mycosis Fungoides/radiotherapy , Radiotherapy, Conformal/methods , Skin Neoplasms/radiotherapy , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prospective Studies , Treatment Outcome
18.
Exp Dermatol ; 16(4): 297-301, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17359335

ABSTRACT

Recent experimental data offer convincing evidence for the existence of cancer stem cells in leukaemia, brain tumors and breast cancer. These cells are responsible for the maintenance of tumor growth and relapses after cytoreductive treatments. This paper provides a brief overview of current data supporting the idea of cancer stem cells in the pathogenesis of cutaneous malignancies, including skin carcinoma, malignant melanoma and cutaneous T-cell lymphoma. The characterization of putative cancer stem cells is important to develop new therapies selectively targeting these cells.


Subject(s)
Lymphoma, T-Cell/pathology , Melanoma/pathology , Skin Neoplasms/pathology , Stem Cells/pathology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...