Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Clin Pract ; 2022: 2449068, 2022.
Article in English | MEDLINE | ID: mdl-35685574

ABSTRACT

Background: This manuscript describes the genetic features of SARS-CoV-2 mutations, prevalent phylogenetic lineages, and the disease severity amongst COVID-19-vaccinated individuals in a tertiary cancer hospital during the second wave of the pandemic in Mumbai, India. Methods: This observational study included 159 COVID-19 patients during the second wave of the pandemic from 17th March to 1st June 2021 at a tertiary cancer care centre in Mumbai. The cohort comprised of healthcare workers, staff relatives, cancer patients, and patient relatives. For comparison, 700 SARS-CoV-2 genomes sequenced during the first wave (23rd April to 25th September 2020) at the same centre were also analysed. Patients were assigned to nonvaccinated (no vaccination or <14 days from the 1st dose, n = 92), dose 1(≥14 days from the 1st dose to <14 days from the 2nd dose, n = 29), and dose 2 (≥14 days from the 2nd dose, n = 38) groups. Primary measure was the prevalence of SARS-CoV-2 genomic lineages among different groups. In addition, severity of COVID-19 was assessed according to clinical and genomic variables. Results: Kappa B.1.1671.1 and delta B.1.617.2 variants contributed to an overwhelming majority of sequenced genomes (unvaccinated: 40/92, 43.5% kappa, 46/92, 50% delta; dose 1: 14/29, 48.3% kappa, 15/29, 51.7% delta; and dose 2: 23/38, 60.5% kappa, 14/38 36.8% delta). The proportion of the kappa and delta variants did not differ significantly across the unvaccinated, dose 1, and dose 2 groups (p = 0.27). There was no occurrence of severe COVID-19 in the dose 2 group (0/38, 0% vs. 14/121, 11.6%; p = 0.02). SARS-CoV-2 genomes from all three severe COVID-19 patients in the vaccinated group belonged to the delta lineage (3/28, 10.7% vs. 0/39, 0.0%, p = 0.04). Conclusions: Sequencing analysis of SARS-COV-2 genomes from Mumbai during the second wave of COVID-19 suggests the prevalence of the kappa B.1.617.1 and the delta B.1.627.2 variants among both vaccinated and unvaccinated individuals. Continued evaluation of genomic sequencing data from breakthrough COVID-19 is necessary for monitoring the properties of evolving variants of concern and formulating appropriate immune response boosting and therapeutic strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Genomics , Humans , Phylogeny , SARS-CoV-2/genetics
3.
Int J Infect Dis ; 118: 95-103, 2022 May.
Article in English | MEDLINE | ID: mdl-35192951

ABSTRACT

BACKGROUND: There are sparse longitudinal data on SARS-CoV-2 infection after previous infection and after partial or full vaccination. METHODS: This study of a cohort of healthcare workers used Kaplan-Meier analysis with appropriate definition of events and censoring and used Cox models to assess outcomes, with data cut-off on June 18, 2021. RESULTS: A total of 1806 individuals with median age of 32 (18-64) years, 1483 (82.1%) with at least one vaccine dose, 1085 (60.1%) with 2 vaccine doses, 408 (22.6%) with at least one episode of SARS-CoV-2 infection, and 6 (1.47%) with 2 episodes of infection were included in the analysis. At median follow-up of 38.4 weeks after first SARS-CoV-2 infection (n=408), the 52-week probability of reinfection was 2.2% (95% CI, 1.0-4.91%); and at median follow-up of 13.3 weeks after second dose, the 16-week probability of breakthrough infection was 5.6% (95% CI, 4.33-7.23%), which was significantly higher among those without previous SARS-CoV-2 infection versus with previous infection (6.4% vs 1.8%, p=0.016, adjusted Cox HR=3.49, 95% CI, 1.09-11.20, p=0.036) and females versus males (7.9% vs 3.8%, p=0.007, adjusted Cox HR=2.06, 95% CI 1.19-3.56, p=0.01). CONCLUSIONS: There was low probability of reinfection after previous SARS-CoV-2 infection and higher vaccine breakthrough infections among females and those without previous infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Female , Humans , Male , Middle Aged , Pandemics , Reinfection/epidemiology , Reinfection/prevention & control
4.
Immunol Cell Biol ; 100(1): 61-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34582592

ABSTRACT

Recent studies have highlighted multiple immune perturbations related to severe acute respiratory syndrome coronavirus 2 infection-associated respiratory disease [coronavirus disease 2019 (COVID-19)]. Some of them were associated with immunopathogenesis of severe COVID-19. However, reports on immunological indicators of severe COVID-19 in the early phase of infection in patients with comorbidities such as cancer are scarce. We prospectively studied about 200 immune response parameters, including a comprehensive immune-cell profile, inflammatory cytokines and other parameters, in 95 patients with COVID-19 (37 cancer patients without active disease and intensive chemo/immunotherapy, 58 patients without cancer) and 21 healthy donors. Of 95 patients, 41 had severe disease, and the remaining 54 were categorized as having a nonsevere disease. We evaluated the association of immune response parameters with severe COVID-19. By principal component analysis, three immune signatures defining characteristic immune responses in COVID-19 patients were found. Immune cell perturbations, in particular, decreased levels of circulating dendritic cells (DCs) along with reduced levels of CD4 T-cell subsets such as regulatory T cells (Tregs ), type 1 T helper (Th1) and Th9; additionally, relative expansion of effector natural killer (NK) cells were significantly associated with severe COVID-19. Compared with patients without cancer, the levels of terminal effector CD4 T cells, Tregs , Th9, effector NK cells, B cells, intermediate-type monocytes and myeloid DCs were significantly lower in cancer patients with mild and severe COVID-19. We concluded that severely depleted circulating myeloid DCs and helper T subsets in the initial phase of infection were strongly associated with severe COVID-19 independent of age, type of comorbidity and other parameters. Thus, our study describes the early immune response associated with severe COVID-19 in cancer patients without intensive chemo/immunotherapy.


Subject(s)
COVID-19 , Neoplasms , Humans , Immunity , Neoplasms/therapy , SARS-CoV-2 , T-Lymphocyte Subsets
SELECTION OF CITATIONS
SEARCH DETAIL
...