Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Sports Sci Med Rehabil ; 16(1): 39, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326816

ABSTRACT

BACKGROUND: The effects of exercise on cognitive functions and general brain health have been increasingly studied. Such studies conducted among athletes are very important to understanding the effects of different exercise methods on biochemical parameters and cognitive performance. The present study aimed to compare the neuroprotective effects of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) based on biochemical parameters and cognitive performance in athletes. METHODS: A total of twenty-eight elite male boxing athletes aged > 18 years, with at least eight years of training experience, who successfully achieved national and international levels were included in this study. The elite athletes participating in the study were aged 24.43 ± 4.72 years, 14.45 ± 5.89 years of training experience, had a body weight of 74.64 ± 7.82 kg, and had a height of 177 ± 7.15 cm. Athletes who consumed any stimulants during the testing or supplementation phase, nutritional supplements, or steroids that may have affected hormone levels or sports performance in the last three months were excluded from this study. Venous blood samples were obtained, and cognitive performance tests (Stroop tests) were applied (i) immediately after high-intensity intermittent exercise (HIIE), (ii) one hour after HIIE, (iii) immediately after moderate-intensity continuous exercise (MICE), and (iv) one hour after MICE. Serum BDNF, S100B, and NSE levels were measured after each session. RESULTS: Serum BDNF levels were significantly (F = 2.142, P < 0.001, ηp 2 = 0.589) greater in the HIIE group (5.65 ± 1.79 ng/mL) than in the control group (1.24 ± 0.54 ng/mL) and MICE group (3.38 ± 1.29 ng/mL) for the samples obtained immediately after exercise. Serum S100B levels were significantly (F = 3.427, P < 0.001, ηp 2 = 0.427) greater in the HIIE group (71.92 ± 23.05 ng/L) than in the control group (47.39 ± 15.78 ng/L), however there was no significant difference between the HIIE and MICE groups (59.62 ± 28.90 ng/L) in the samples obtained immediately after exercise. Serum NSE levels were significantly (F = 1.475, P < 0.001, ηp 2 = 0.312) greater in the HIIE group (14.57 ± 2.52 ng/mL) than in the control group (9.51 ± 3.44 ng/ML mL), however there was no significant difference between the HIIE and MICE groups (59.62 ± 28.90 ng/L) in the samples obtained immediately after exercise. Compared with control groups, both HIIE and MICE improved cognitive performance demonstrated by the Stroop test results. Again, HIIE was superior to MICE in terms of Stroop task reaction time and error rate (incongruent task) scores. CONCLUSION: HIIE and MICE have favorable effects on improving cognitive performance and neuroprotection in an athlete population. HIIE is considered to be superior to MICE in improving neuroprotection and cognitive performance. Our study has remarkable results demonstrating the benefits of HIIT on neuroprotection and cognitive performance. HIIE is recommended instead of MICE, especially in sports where cognitive performance is more important.

2.
Nutrients ; 14(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36297081

ABSTRACT

In previous studies, the effect of single or combined intake of caffeine (CAF) and taurine (TAU) on exercise performance was investigated. However, the potential synergistic effect on physical and cognitive performance after fatigue induced by anaerobic exercise is unknown. The effects of single and combination CAF and TAU supplementation on the Wingate test in elite male boxers and to evaluate balance, agility and cognitive performance after fatigue are being investigated for the first time in this study. Twenty elite male boxers 22.14 ± 1.42 years old were divided into four groups in this double-blind, randomized crossover study: CAF (6 mg/kg of caffeine), TAU (3 g single dose of taurine), CAF*TAU (co-ingestion of 3 g single dose of taurine and 6 mg/kg of caffeine) and PLA (300 mg maltodextrin). The findings are as follows: co-ingestion of CAF*TAU, improved peak (W/kg), average (W), minimum (W) power, time to reach (s), and RPE performances compared to the PLA group significantly (p < 0.05). Similarly, it was determined that a single dose of TAU, created a significant difference (p < 0.05) in peak power (W/kg), and average and minimum power (W) values compared to the CAF group. According to the balance and agility tests performed after the Wingate test, co-ingestion of CAF*TAU revealed a significant difference (p < 0.05) compared to the PLA group. In terms of cognitive performance, co-ingestion of CAF*TAU significantly improved the neutral reaction time (ms) compared to the TAU, CAF and PLA groups. As a result, elite male boxers performed better in terms of agility, balance and cognitive function when they consumed a combination of 6 mg/kg CAF and 3 g TAU. It has been determined that the combined use of these supplements is more effective than their single use.


Subject(s)
Athletic Performance , Caffeine , Male , Humans , Young Adult , Adult , Caffeine/pharmacology , Cross-Over Studies , Taurine/pharmacology , Double-Blind Method , Dietary Supplements , Cognition , Polyesters
SELECTION OF CITATIONS
SEARCH DETAIL
...