Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
iScience ; 27(7): 110306, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39055915

ABSTRACT

Hematopoietic aging is associated with decreased hematopoietic stem cell (HSC) self-renewal capacity and myeloid skewing. We report that culture of bone marrow (BM) HSCs from aged mice with epidermal growth factor (EGF) suppressed myeloid skewing, increased multipotent colony formation, and increased HSC repopulation in primary and secondary transplantation assays. Mice transplanted with aged, EGF-treated HSCs displayed increased donor cell engraftment within BM HSCs and systemic administration of EGF to aged mice increased HSC self-renewal capacity in primary and secondary transplantation assays. Expression of a dominant negative EGFR in Scl/Tal1+ hematopoietic cells caused increased myeloid skewing and depletion of long term-HSCs in 15-month-old mice. EGF treatment decreased DNA damage in aged HSCs and shifted the transcriptome of aged HSCs from genes regulating cell death to genes involved in HSC self-renewal and DNA repair but had no effect on HSC senescence. These data suggest that EGFR signaling regulates the repopulating capacity of aged HSCs.

2.
Cancer Res ; 84(6): 919-934, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38231476

ABSTRACT

Bone marrow vascular endothelial cells (BM EC) regulate multiple myeloma pathogenesis. Identification of the mechanisms underlying this interaction could lead to the development of improved strategies for treating multiple myeloma. Here, we performed a transcriptomic analysis of human ECs with high capacity to promote multiple myeloma growth, revealing overexpression of the receptor tyrosine kinases, EPHB1 and EPHB4, in multiple myeloma-supportive ECs. Expression of ephrin B2 (EFNB2), the binding partner for EPHB1 and EPHB4, was significantly increased in multiple myeloma cells. Silencing EPHB1 or EPHB4 in ECs suppressed multiple myeloma growth in coculture. Similarly, loss of EFNB2 in multiple myeloma cells blocked multiple myeloma proliferation and survival in vitro, abrogated multiple myeloma engraftment in immune-deficient mice, and increased multiple myeloma sensitivity to chemotherapy. Administration of an EFNB2-targeted single-chain variable fragment also suppressed multiple myeloma growth in vivo. In contrast, overexpression of EFNB2 in multiple myeloma cells increased STAT5 activation, increased multiple myeloma cell survival and proliferation, and decreased multiple myeloma sensitivity to chemotherapy. Conversely, expression of mutant EFNB2 lacking reverse signaling capacity in multiple myeloma cells increased multiple myeloma cell death and sensitivity to chemotherapy and abolished multiple myeloma growth in vivo. Complementary analysis of multiple myeloma patient data revealed that increased EFNB2 expression is associated with adverse-risk disease and decreased survival. This study suggests that EFNB2 reverse signaling controls multiple myeloma pathogenesis and can be therapeutically targeted to improve multiple myeloma outcomes. SIGNIFICANCE: Ephrin B2 reverse signaling mediated by endothelial cells directly regulates multiple myeloma progression and treatment resistance, which can be overcome through targeted inhibition of ephrin B2 to abolish myeloma.


Subject(s)
Ephrin-B2 , Multiple Myeloma , Animals , Humans , Mice , Endothelial Cells/metabolism , Ephrin-B2/genetics , Ephrin-B2/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, EphB4/genetics , Receptor, EphB4/metabolism , Signal Transduction/physiology
3.
J Autism Dev Disord ; 51(6): 1995-2003, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32889639

ABSTRACT

To examine reliability and validity of the new Social Motor Function Classification System for Children with Autism Spectrum Disorders (SMFCS-ASD). The SMFCS-ASD reliability was examined on 25 children (62.4 months SD 7.8) with ASD among six physical therapists. The validity study involved 1001 children (57.0 months, SD 9.9) with ASD using the gross motor scale (GMS) of the Peabody Developmental Motor Scales (PDMS-2). The indices of agreement and reliability across six examiners were moderate to substantial (Cohen's κ ≤ 0.65 and ICC > 0.90, all p < 0.001). The SMFCS-ASD was significantly correlated with the GMS of PDMS-2 (all rho from 0.61 to 0.76, p < 0.001). The SMFCS-ASD was reliable and significantly correlated with the GMS of the PDMS-2.


Subject(s)
Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Psychometrics/methods , Child , Child Development , Child, Preschool , Humans , Male , Reproducibility of Results
4.
Blood ; 136(4): 441-454, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32369572

ABSTRACT

Chemotherapy and irradiation cause DNA damage to hematopoietic stem cells (HSCs), leading to HSC depletion and dysfunction and the risk of malignant transformation over time. Extrinsic regulation of HSC DNA repair is not well understood, and therapies to augment HSC DNA repair following myelosuppression remain undeveloped. We report that epidermal growth factor receptor (EGFR) regulates DNA repair in HSCs following irradiation via activation of the DNA-dependent protein kinase-catalytic subunit (DNA-PKcs) and nonhomologous end joining (NHEJ). We show that hematopoietic regeneration in vivo following total body irradiation is dependent upon EGFR-mediated repair of DNA damage via activation of DNA-PKcs. Conditional deletion of EGFR in hematopoietic stem and progenitor cells (HSPCs) significantly decreased DNA-PKcs activity following irradiation, causing increased HSC DNA damage and depressed HSC recovery over time. Systemic administration of epidermal growth factor (EGF) promoted HSC DNA repair and rapid hematologic recovery in chemotherapy-treated mice and had no effect on acute myeloid leukemia growth in vivo. Further, EGF treatment drove the recovery of human HSCs capable of multilineage in vivo repopulation following radiation injury. Whole-genome sequencing analysis revealed no increase in coding region mutations in HSPCs from EGF-treated mice, but increased intergenic copy number variant mutations were detected. These studies demonstrate that EGF promotes HSC DNA repair and hematopoietic regeneration in vivo via augmentation of NHEJ. EGF has therapeutic potential to promote human hematopoietic regeneration, and further studies are warranted to assess long-term hematopoietic effects.


Subject(s)
DNA End-Joining Repair , ErbB Receptors/metabolism , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Regeneration , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , DNA Damage , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epidermal Growth Factor/genetics , Epidermal Growth Factor/metabolism , ErbB Receptors/genetics , Hematopoietic Stem Cells/cytology , Humans , Mice
5.
J Clin Invest ; 130(1): 315-328, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31613796

ABSTRACT

Tyrosine kinase inhibitors (TKIs) induce molecular remission in the majority of patients with chronic myelogenous leukemia (CML), but the persistence of CML stem cells hinders cure and necessitates indefinite TKI therapy. We report that CML stem cells upregulate the expression of pleiotrophin (PTN) and require cell-autonomous PTN signaling for CML pathogenesis in BCR/ABL+ mice. Constitutive PTN deletion substantially reduced the numbers of CML stem cells capable of initiating CML in vivo. Hematopoietic cell-specific deletion of PTN suppressed CML development in BCR/ABL+ mice, suggesting that cell-autonomous PTN signaling was necessary for CML disease evolution. Mechanistically, PTN promoted CML stem cell survival and TKI resistance via induction of Jun and the unfolded protein response. Human CML cells were also dependent on cell-autonomous PTN signaling, and anti-PTN antibody suppressed human CML colony formation and CML repopulation in vivo. Our results suggest that targeted inhibition of PTN has therapeutic potential to eradicate CML stem cells.


Subject(s)
Carrier Proteins/metabolism , Cytokines/metabolism , Fusion Proteins, bcr-abl/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction , Animals , Carrier Proteins/genetics , Cell Survival , Cytokines/genetics , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, Transgenic , Neoplastic Stem Cells/pathology
6.
Nat Commun ; 10(1): 3667, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413255

ABSTRACT

Receptor type protein tyrosine phosphatase-sigma (PTPσ) is primarily expressed by adult neurons and regulates neural regeneration. We recently discovered that PTPσ is also expressed by hematopoietic stem cells (HSCs). Here, we describe small molecule inhibitors of PTPσ that promote HSC regeneration in vivo. Systemic administration of the PTPσ inhibitor, DJ001, or its analog, to irradiated mice promotes HSC regeneration, accelerates hematologic recovery, and improves survival. Similarly, DJ001 administration accelerates hematologic recovery in mice treated with 5-fluorouracil chemotherapy. DJ001 displays high specificity for PTPσ and antagonizes PTPσ via unique non-competitive, allosteric binding. Mechanistically, DJ001 suppresses radiation-induced HSC apoptosis via activation of the RhoGTPase, RAC1, and induction of BCL-XL. Furthermore, treatment of irradiated human HSCs with DJ001 promotes the regeneration of human HSCs capable of multilineage in vivo repopulation. These studies demonstrate the therapeutic potential of selective, small-molecule PTPσ inhibitors for human hematopoietic regeneration.


Subject(s)
Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Hematopoietic Stem Cells/drug effects , Receptor-Like Protein Tyrosine Phosphatases, Class 2/antagonists & inhibitors , Regeneration/drug effects , Allosteric Regulation , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/radiation effects , Fluorouracil/pharmacology , Hematopoietic Stem Cells/radiation effects , Humans , Mice , Radiation , Regeneration/radiation effects , bcl-X Protein/drug effects , bcl-X Protein/metabolism , rac1 GTP-Binding Protein/drug effects , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/drug effects , rho GTP-Binding Proteins/metabolism
7.
Cell Stem Cell ; 23(3): 370-381.e5, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100167

ABSTRACT

Bone marrow (BM) perivascular stromal cells and vascular endothelial cells (ECs) are essential for hematopoietic stem cell (HSC) maintenance, but the roles of distinct niche compartments during HSC regeneration are less understood. Here we show that Leptin receptor-expressing (LepR+) BM stromal cells and ECs dichotomously regulate HSC maintenance and regeneration via secretion of pleiotrophin (PTN). BM stromal cells are the key source of PTN during steady-state hematopoiesis because its deletion from stromal cells, but not hematopoietic cells, osteoblasts, or ECs, depletes the HSC pool. Following myelosuppressive irradiation, PTN expression is increased in bone marrow endothelial cells (BMECs), and PTN+ ECs are more frequent in the niche. Moreover, deleting Ptn from ECs impairs HSC regeneration whereas Ptn deletion from BM stromal cells does not. These findings reveal dichotomous and complementary regulation of HSC maintenance and regeneration by BM stromal cells and ECs.


Subject(s)
Bone Marrow/metabolism , Carrier Proteins/metabolism , Cell Self Renewal , Cytokines/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Cytokines/deficiency , Female , Male , Mice , Mice, Inbred C57BL
8.
JCI Insight ; 3(11)2018 06 07.
Article in English | MEDLINE | ID: mdl-29875320

ABSTRACT

Oncogenic Kras expression specifically in hematopoietic stem cells (HSCs) induces a rapidly fatal myeloproliferative neoplasm in mice, suggesting that Kras signaling plays a dominant role in normal hematopoiesis. However, such a conclusion is based on expression of an oncogenic version of Kras. Hence, we sought to determine the effect of simply increasing the amount of endogenous wild-type Kras on HSC fate. To this end, we utilized a codon-optimized version of the murine Kras gene (Krasex3op) that we developed, in which silent mutations in exon 3 render the encoded mRNA more efficiently translated, leading to increased protein expression without disruption to the normal gene architecture. We found that Kras protein levels were significantly increased in bone marrow (BM) HSCs in Krasex3op/ex3op mice, demonstrating that the translation of Kras in HSCs is normally constrained by rare codons. Krasex3op/ex3op mice displayed expansion of BM HSCs, progenitor cells, and B lymphocytes, but no evidence of myeloproliferative disease or leukemia in mice followed for 12 months. BM HSCs from Krasex3op/ex3op mice demonstrated increased multilineage repopulating capacity in primary competitive transplantation assays, but secondary competitive transplants revealed exhaustion of long-term HSCs. Following total body irradiation, Krasex3op/ex3op mice displayed accelerated hematologic recovery and increased survival. Mechanistically, HSCs from Krasex3op/ex3op mice demonstrated increased proliferation at baseline, with a corresponding increase in Erk1/2 phosphorylation and cyclin-dependent kinase 4 and 6 (Cdk4/6) activation. Furthermore, both the enhanced colony-forming capacity and in vivo repopulating capacity of HSCs from Krasex3op/ex3op mice were dependent on Cdk4/6 activation. Finally, BM transplantation studies revealed that augmented Kras expression produced expansion of HSCs, progenitor cells, and B cells in a hematopoietic cell-autonomous manner, independent from effects on the BM microenvironment. This study provides fundamental demonstration of codon usage in a mammal having a biological consequence, which may speak to the importance of codon usage in mammalian biology.


Subject(s)
Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Bone Marrow Transplantation , Cells, Cultured , Codon/genetics , Exons/genetics , Female , Male , Mice , Mice, Transgenic , Models, Animal , Mutation , Primary Cell Culture , Proto-Oncogene Proteins p21(ras)/metabolism , Transplantation Chimera , Whole-Body Irradiation
9.
Nat Med ; 23(1): 91-99, 2017 01.
Article in English | MEDLINE | ID: mdl-27918563

ABSTRACT

The role of osteolineage cells in regulating hematopoietic stem cell (HSC) regeneration following myelosuppression is not well understood. Here we show that deletion of the pro-apoptotic genes Bak and Bax in osterix (Osx, also known as Sp7 transcription factor 7)-expressing cells in mice promotes HSC regeneration and hematopoietic radioprotection following total body irradiation. These mice showed increased bone marrow (BM) levels of the protein dickkopf-1 (Dkk1), which was produced in Osx-expressing BM cells. Treatment of irradiated HSCs with Dkk1 in vitro increased the recovery of both long-term repopulating HSCs and progenitor cells, and systemic administration of Dkk1 to irradiated mice increased hematopoietic recovery and improved survival. Conversely, inducible deletion of one allele of Dkk1 in Osx-expressing cells in adult mice inhibited the recovery of BM stem and progenitor cells and of complete blood counts following irradiation. Dkk1 promoted hematopoietic regeneration via both direct effects on HSCs, in which treatment with Dkk1 decreased the levels of mitochondrial reactive oxygen species and suppressed senescence, and indirect effects on BM endothelial cells, in which treatment with Dkk1 induced epidermal growth factor (EGF) secretion. Accordingly, blockade of the EGF receptor partially abrogated Dkk1-mediated hematopoietic recovery. These data identify Dkk1 as a regulator of hematopoietic regeneration and demonstrate paracrine cross-talk between BM osteolineage cells and endothelial cells in regulating hematopoietic reconstitution following injury.


Subject(s)
Bone Marrow Cells/metabolism , Cell Self Renewal , Hematopoietic Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Osteoblasts/metabolism , Regeneration , Transcription Factors/metabolism , Whole-Body Irradiation , Animals , Bone Marrow/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Epidermal Growth Factor/metabolism , ErbB Receptors/antagonists & inhibitors , Flow Cytometry , Gene Expression Profiling , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/radiation effects , Intercellular Signaling Peptides and Proteins/pharmacology , Mice , Mitochondria/metabolism , Radiation Injuries, Experimental , Reactive Oxygen Species , Sp7 Transcription Factor , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
10.
Cell Rep ; 17(6): 1584-1594, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27806297

ABSTRACT

Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10+/+ mice. After total body irradiation (TBI), Grb10m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10+/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo.


Subject(s)
Cell Self Renewal/genetics , GRB10 Adaptor Protein/deficiency , Gene Deletion , Genomic Imprinting , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Regeneration , Animals , Bone Marrow Cells/cytology , Cell Proliferation , GRB10 Adaptor Protein/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Whole-Body Irradiation
11.
Radiat Res ; 186(2): 141-52, 2016 08.
Article in English | MEDLINE | ID: mdl-27387861

ABSTRACT

Ionizing radiation exposure can cause acute radiation sickness (ARS) by damaging the hematopoietic compartment. Radiation damages quiescent hematopoietic stem cells (HSCs) and proliferating hematopoietic cells, resulting in neutropenia, thrombocytopenia and increased risk for long-term hematopoietic dysfunction and myelodysplasia. While some aspects of the hematopoietic response to radiation injury are intrinsic to hematopoietic cells, the recovery of the HSC pool and overall hematopoiesis is also dependent on signals from bone marrow endothelial cells (BM ECs) within the HSC vascular niche. The precise mechanisms through which BM ECs regulate HSC regeneration remain unclear. Characterization of the altered EC gene expression that occurs in response to radiation could provide a roadmap to the discovery of EC-derived mechanisms that regulate hematopoietic regeneration. Here, we show that 5 Gy total-body irradiation substantially alters the expression of numerous genes in BM ECs within 24 h and this molecular response largely resolves by day 14 postirradiation. Several unique and nonannotated genes, which encode secreted proteins were upregulated and downregulated in ECs in response to radiation. These results highlight the complexity of the molecular response of BM ECs to ionizing radiation and identify several candidate mechanisms that should be prioritized for functional analysis in models of hematopoietic injury and regeneration.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/radiation effects , Animals , Bone Marrow Cells/cytology , Cell Death/radiation effects , Dose-Response Relationship, Radiation , Endothelial Cells/metabolism , Female , Gene Expression Regulation/radiation effects , Mice , Radiation, Ionizing , Time Factors , Whole-Body Irradiation/adverse effects
12.
Int J Cancer ; 136(6): 1390-401, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25047817

ABSTRACT

Most solid tumors contain cancer-associated fibroblasts (CAFs) that support tumorigenesis and malignant progression. However, the cellular origins of CAFs in epithelial ovarian cancers (EOCs) remain poorly understood, and their utility as a source of clinical biomarkers for cancer diagnosis has not been explored in great depth. Here, we report establishing in vitro and in vivo models of CAFs in ovarian cancer development. Normal ovarian fibroblasts and mesenchymal stem cells cultured in the presence of EOC cells acquired a CAF-like phenotype, and promoted EOC cell migration in vitro. CAFs also promoted ovarian cancer growth in vivo in both subcutaneous and intraperitoneal murine xenograft assays. Molecular profiling of CAFs identified gene expression signatures that were highly enriched for extracellular and secreted proteins. We identified novel candidate CAF-specific biomarkers for ovarian cancer including NPPB, which was expressed in the stroma of 60% primary ovarian cancer tissues (n = 145) but not in the stroma of normal ovaries (n = 4). NPPB is a secreted protein that was also elevated in the blood of 50% of women with ovarian cancer (n = 8). Taken together, these data suggest that the tumor stroma is a novel source of biomarkers, including NPPB, that may be of clinical utility for detection of EOC.


Subject(s)
Biomarkers, Tumor/analysis , Fibroblasts/chemistry , Neoplasms, Glandular and Epithelial/pathology , Nitrobenzoates/analysis , Ovarian Neoplasms/pathology , Animals , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Female , Humans , Mesenchymal Stem Cells/chemistry , Mesenchymal Stem Cells/physiology , Mice , Neoplasms, Glandular and Epithelial/chemistry , Ovarian Neoplasms/chemistry
13.
Anemia ; 2012: 481583, 2012.
Article in English | MEDLINE | ID: mdl-22693661

ABSTRACT

The Fanconi Anemia (FA) pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs). The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

SELECTION OF CITATIONS
SEARCH DETAIL
...