Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 9(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068179

ABSTRACT

Abdominal aortic aneurysm (AAA) is a prevalent aortic disease that causes high mortality due to asymptomatic gradual expansion and sudden rupture. The underlying molecular mechanisms and effective pharmaceutical therapy for preventing AAA progression have not been fully identified. In this study, we identified the key modules and hub genes involved in AAA growth from the GSE17901 dataset in the Gene Expression Omnibus (GEO) database through the weighted gene co-expression network analysis (WGCNA). Key genes were further selected and validated in the mouse dataset (GSE12591) and human datasets (GSE7084, GSE47472, and GSE57691). Finally, we predicted drug candidates targeting key genes using the Drug-Gene Interaction database. Overall, we identified key modules enriched in the mitotic cell cycle, GTPase activity, and several metabolic processes. Seven key genes (CCR5, ADCY5, ADCY3, ACACB, LPIN1, ACSL1, UCP3) related to AAA progression were identified. A total of 35 drugs/compounds targeting the key genes were predicted, which may have the potential to prevent AAA progression.

2.
Chin Med J (Engl) ; 134(1): 73-80, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33323827

ABSTRACT

BACKGROUND: Arteriosclerosis obliterans (ASO) is a major cause of adult limb loss worldwide. Autophagy of vascular endothelial cell (VEC) contributes to the ASO progression. However, the molecular mechanism that controls VEC autophagy remains unclear. In this study, we aimed to explore the role of the GRB2 associated binding protein 1 (GAB1) in regulating VEC autophagy. METHODS: In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression. Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima. Gain- and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1. RESULTS: The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor (0.80 vs. 0.20, t = 6.43, P < 0.05). The expression level of GAB1 mRNA (1.00 vs. 0.24, t = 7.41, P < 0.05) and protein (0.72 vs. 0.21, t = 5.97, P < 0.05) was significantly decreased in ASO group as compared with the control group. Loss of GAB1 led to a remarkable decrease in LC3II (1.19 vs. 0.68, t = 5.99, P < 0.05), whereas overexpression of GAB1 significantly led to a decrease in LC3II level (0.41 vs. 0.93, t = 7.12, P < 0.05). Phosphorylation levels of JNK and p38 were significantly associated with gain- and loss-of-function of GAB1 protein. CONCLUSION: Loss of GAB1 promotes VEC autophagy which is associated with ASO. GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.


Subject(s)
Adaptor Proteins, Signal Transducing , Arteriosclerosis Obliterans , Autophagy , Phosphoproteins , Adult , Arteriosclerosis Obliterans/genetics , GRB2 Adaptor Protein , Humans , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Signal Transduction
3.
Cancers (Basel) ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333841

ABSTRACT

Pancreatic cancer is a malignant disease with high mortality and a dismal prognosis. Circulating tumor cell (CTC) detection and characterization have emerged as essential techniques for early detection, prognostication, and liquid biopsy in many solid malignancies. Unfortunately, due to the low EPCAM expression in pancreatic cancer CTCs, no specific marker is available to identify and isolate this rare cell population. This study analyzed single-cell RNA sequencing profiles of pancreatic CTCs from a genetically engineered mouse model (GEMM) and pancreatic cancer patients. Through dimensionality reduction analysis, murine pancreatic CTCs were grouped into three clusters with different biological functions. CLIC4 and GAS2L1 were shown to be overexpressed in pancreatic CTCs in comparison with peripheral blood mononuclear cells (PBMCs). Further analyses of PBMCs and RNA-sequencing datasets of enriched pancreatic CTCs were used to validate the overexpression of GAS2L1 in pancreatic CTCs. A combinatorial approach using both GAS2L1 and EPCAM expression leads to an increased detection rate of CTCs in PDAC in both GEMM and patient samples. GAS2L1 is thus proposed as a novel biomarker of pancreatic cancer CTCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...