Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Sheng Li Xue Bao ; 74(1): 93-109, 2022 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-35199130

ABSTRACT

Diabetic nephropathy is a microvascular complication of diabetes. Its etiology involves metabolic disorder-induced endothelial dysfunction. Endothelium-derived nitric oxide (NO) plays an important role in a number of physiological processes, including glomerular filtration and endothelial protection. NO dysregulation is an important pathogenic basis of diabetic nephropathy. Hyperglycemia and dyslipidemia can lead to oxidative stress, chronic inflammation and insulin resistance, thus affecting NO homeostasis regulated by endothelial nitric oxide synthase (eNOS) and a conglomerate of related proteins and factors. The reaction of NO and superoxide (O2.-) to form peroxynitrite (ONOO-) is the most important pathological NO pathway in diabetic nephropathy. ONOO- is a hyper-reactive oxidant and nitrating agent in vivo which can cause the uncoupling of eNOS. The uncoupled eNOS does not produce NO but produces superoxide. Thus, eNOS uncoupling is a critical contributor of NO dysregulation. Understanding the regulatory mechanism of NO and the effects of various pathological conditions on it could reveal the pathophysiology of diabetic nephropathy, potential drug targets and mechanisms of action. We believe that increasing the stability and activity of eNOS dimers, promoting NO synthesis and increasing NO/ONOO- ratio could guide the development of drugs to treat diabetic nephropathy. We will illustrate these actions with some clinically used drugs as examples in the present review.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Diabetic Nephropathies/drug therapy , Endothelium, Vascular , Humans , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type III/pharmacology , Nitric Oxide Synthase Type III/therapeutic use , Oxidative Stress , Peroxynitrous Acid/metabolism , Peroxynitrous Acid/pharmacology , Peroxynitrous Acid/therapeutic use
2.
Biochem Biophys Res Commun ; 426(3): 334-41, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22940132

ABSTRACT

Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca(2+)/calcineurin/NFAT.


Subject(s)
Calcium Signaling , Calcium/metabolism , Caveolin 1/genetics , Transcription, Genetic , Animals , Calcineurin/metabolism , Calcium/pharmacology , Calcium Channels, L-Type/metabolism , Cell Line, Tumor , Mice , NFATC Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...