Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 451: 131095, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36889067

ABSTRACT

Constructed wetlands (CWs) are usually operated at low hydraulic load rates (HLRs) of < 0.5 m3/m2/d, and can efficiently remove pharmaceuticals and personal care products (PPCPs) from wastewaters. They however often occupy a large area of land, especially when treating the secondary effluent from wastewater treatment plants (WWTPs) in megacities. High-load CWs (HCWs) with an HLR ≥ 1 m3/m2/d, requiring smaller land areas, are a good option for urban areas. However, their performance for PPCP removal is not clear. In this study, we evaluated the performance of three full-scale HCWs (HLR: 1.0-1.3 m3/m2/d) to remove 60 PPCPs, and found they had a stable removal performance and a higher areal removal capacity than the previously reported CWs operated at low HLRs. We verified the advantages of HCWs by testing the efficiency of two identical CWs at a low HLR (0.15 m3/m2/d) and a high HLR (1.3 m3/m2/d) fed with the same secondary effluent. The areal removal capacity during the high-HLR operation was 6-9 times higher than that during the low-HLR operation. A high dissolved oxygen content, and low COD and NH4-N concentrations in the secondary effluent were critical for the robust PPCP removal by tertiary treatment HCWs.


Subject(s)
Cosmetics , Waste Disposal, Fluid , Wetlands , Wastewater , Pharmaceutical Preparations , Nitrogen
2.
Sci Total Environ ; 815: 152783, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34990669

ABSTRACT

Recognizing the main sources of pharmaceutically active compounds (PhACs) found in surface waters has been a challenge to the effective control of PhAC contamination from the sources. In the present study, a novel method based on Characteristic Matrix (ChaMa) model of indicator PhACs to quantitatively identify the contribution of multiple emission sources was developed, verified, and applied in Huangpu River, Shanghai. Carbamazepine (CBZ), caffeine (CF) and sulfadiazine (SDZ) were proposed as indicators. Their occurrence patterns in the corresponding emission sources and the factor analysis of their composition in the surface water samples were employed to construct the ChaMa model and develop the source apportionment method. Samples from typical emission sources were collected and analyzed as hypothetical surface water samples, to verify the method proposed. The results showed that the calculated contribution proportions of emission sources to the corresponding source samples were 45%-85%, proving the feasibility of the method. Finally, the method was applied to different sections in Huangpu River, and the results showed that livestock wastewater was the dominant emission source, accounting for 55%-73% in the upper reach of Huangpu River. Untreated municipal wastewater was dominant in the middle and lower reaches of Huangpu River, accounting for 76%-94%. This novel source apportionment method allows the quantitative identification of the contribution of multiple PhAC emission sources. It can be replicated in other regions where the occurrence of localized indicators was available, and will be helpful to control the contamination of PhACs in the water environment from the major sources.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , China , Environmental Monitoring , Rivers , Wastewater , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...