Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 30(3): e14691, 2024 03.
Article in English | MEDLINE | ID: mdl-38532543

ABSTRACT

AIMS: Neuronal cell death is a primary factor that determines the outcome after traumatic brain injury (TBI). We previously revealed the importance of receptor for activated C kinase (RACK1), a multifunctional scaffold protein, in maintaining neuronal survival after TBI, but the specific mechanism remains unclear. The aim of this study was to explore the mechanism underlying RACK1-mediated neuroprotection in TBI. METHODS: TBI model was established using controlled cortical impact injury in Sprague-Dawley rats. Genetic intervention and pharmacological inhibition of RACK1 and PERK-autophagy signaling were administrated by intracerebroventricular injection. Western blotting, coimmunoprecipitation, transmission electron microscopy, real-time PCR, immunofluorescence, TUNEL staining, Nissl staining, neurobehavioral tests, and contusion volume assessment were performed. RESULTS: Endogenous RACK1 was upregulated and correlated with autophagy induction after TBI. RACK1 knockdown markedly inhibited TBI-induced autophagy, whereas RACK1 overexpression exerted the opposite effects. Moreover, RACK1 overexpression ameliorated neuronal apoptosis, neurological deficits, and cortical tissue loss after TBI, and these effects were abrogated by the autophagy inhibitor 3-methyladenine or siRNAs targeting Beclin1 and Atg5. Mechanistically, RACK1 interacted with PERK and activated PERK signaling. Pharmacological and genetic inhibition of the PERK pathway abolished RACK1-induced autophagy after TBI. CONCLUSION: Our findings indicate that RACK1 protected against TBI-induced neuronal damage partly through autophagy induction by regulating the PERK signaling pathway.


Subject(s)
Brain Injuries, Traumatic , Signal Transduction , Rats , Animals , Rats, Sprague-Dawley , Brain Injuries, Traumatic/metabolism , Neuroprotection , Apoptosis , Autophagy , Receptors for Activated C Kinase
2.
Neuroscience ; 545: 111-124, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38492796

ABSTRACT

Armcx1 is a member of the ARMadillo repeat-Containing protein on the X chromosome (ARMCX) family, which is recognized to have evolutionary conserved roles in regulating mitochondrial transport and dynamics. Previous research has shown that Armcx1 is expressed at higher levels in mice after axotomy and in adult retinal ganglion cells after crush injury, and this protein increases neuronal survival and axonal regeneration. However, its role in traumatic brain injury (TBI) is unclear. Therefore, the aim of this study was to assess the expression of Armcx1 after TBI and to explore possible related mechanisms by which Armcx1 is involved in TBI. We used C57BL/6 male mice to model TBI and evaluated the role of Armcx1 in TBI by transfecting mice with Armcx1 small interfering RNA (siRNA) to inhibit Armcx1 expression 24 h before TBI modeling. Western blotting, immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Nissl staining, transmission electron microscopy, adenosine triphosphate (ATP) level measurement, neuronal apoptosis analysis, neurological function scoring and the Morris water maze were performed. The results demonstrated that Armcx1 protein expression was elevated after TBI and that the Armcx1 protein was localized in neurons and astroglial cells in cortical tissue surrounding the injury site. In addition, inhibition of Armcx1 expression further led to impaired mitochondrial transport, abnormal morphology, reduced ATP levels, aggravation of neuronal apoptosis and neurological dysfunction, and decrease Miro1 expression. In conclusion, our findings indicate that Armcx1 may exert neuroprotective effects by ameliorating neurological injury after TBI through a mitochondrial transport pathway involving Miro1.


Subject(s)
Armadillo Domain Proteins , Brain Injuries, Traumatic , Mice, Inbred C57BL , Mitochondria , rho GTP-Binding Proteins , Animals , Male , Mice , Adenosine Triphosphate/metabolism , Apoptosis/physiology , Armadillo Domain Proteins/metabolism , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Maze Learning/physiology , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , rho GTP-Binding Proteins/metabolism
3.
J Korean Neurosurg Soc ; 66(4): 400-408, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36300321

ABSTRACT

OBJECTIVE: Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a crucial factor for the survival of neuron. The role of NMNAT2 in damage following traumatic brain injury (TBI) remains unknown. This study was designed to investigate the role of NMNAT2 in TBI-induced neuronal degeneration and neurological deficits in rats. METHODS: The TBI model was established in Sprague-Dawley rats by a weight-dropping method. Real-time polymerase chain reaction, western blot, immunofluorescence, Fluoro-Jade C staining, and neurological score analyses were carried out. RESULTS: NMNAT2 mRNA and protein levels were increased in the injured-side cortex at 6 hours and peaked 12 hours after TBI. Knocking down NMNAT2 with an injection of small interfering RNA in lateral ventricle significantly exacerbated neuronal degeneration and neurological deficits after TBI, which were accompanied by increased expression of BCL-2-associated X protein (Bax). CONCLUSION: NMNAT2 expression is increased and NMNAT2 exhibits neuroprotective activity in the early stages after TBI, and Bax signaling pathway may be involved in the process. Thus, NMNAT2 is likely to be an important target to prevent secondary damage following TBI.

4.
Neurochem Res ; 48(2): 681-695, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36315368

ABSTRACT

Oxidative stress and neuroinflammation are deemed the prime causes of neurological damage after traumatic brain injury (TBI). Catalpol, an active ingredient of Rehmannia glutinosa, has been suggested to possess antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effects of catalpol against TBI and the underlying mechanisms of action of catalpol. A rat model of TBI was induced by controlled cortical impact. Catalpol (10 mg/kg) or vehicle was administered via intravenous injection 1 h post trauma and then once daily for 3 consecutive days. Following behavioural tests performed 72 h after TBI, the animals were sacrificed and pericontusional areas of the brain were collected for neuropathological experiments and analysis. Treatment with catalpol significantly ameliorated neurological impairment, blood-brain barrier disruption, cerebral oedema, and neuronal apoptosis after TBI (P < 0.05). Catalpol also attenuated TBI-induced oxidative insults, as evidenced by reduced reactive oxygen species generation; decreased malondialdehyde levels; and enhanced superoxide dismutase, catalase and glutathione peroxidase activity (P < 0.05). Catalpol promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 and the expression of its downstream antioxidant enzyme HO-1 following TBI (P < 0.05). Moreover, catalpol treatment markedly inhibited posttraumatic microglial activation and neutrophil infiltration, suppressed NLRP3 inflammasome activation and reduced the production of the proinflammatory cytokine IL-1ß (P < 0.05). Taken together, these findings reveal that catalpol provides neuroprotection against oxidative stress and neuroinflammation after TBI in rats. Therefore, catalpol may be a novel treatment strategy for TBI patients.


Subject(s)
Antioxidants , Brain Injuries, Traumatic , Rats , Animals , Antioxidants/pharmacology , Neuroinflammatory Diseases , Disease Models, Animal , Oxidative Stress , Brain Injuries, Traumatic/metabolism
5.
Mol Brain ; 15(1): 84, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273145

ABSTRACT

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily and is mainly expressed on the surface of myeloid cells such as monocytes, macrophages, and neutrophils. It plays an important role in the triggering and amplification of inflammatory responses, and it is involved in the development of various infectious and non-infectious diseases, autoimmune diseases, and cancers. In recent years, TREM-1 has also been found to participate in the pathological processes of several central nervous system (CNS) diseases. Targeting TREM-1 may be a promising strategy for treating these diseases. This paper aims to characterize TREM-1 in terms of its structure, signaling pathway, expression, regulation, ligands and pathophysiological role in CNS diseases.


Subject(s)
Central Nervous System Diseases , Macrophages , Monocytes , Neutrophils , Triggering Receptor Expressed on Myeloid Cells-1 , Humans , Central Nervous System Diseases/genetics , Central Nervous System Diseases/immunology , Macrophages/immunology , Monocytes/immunology , Neutrophils/immunology , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Triggering Receptor Expressed on Myeloid Cells-1/immunology
6.
Mol Neurobiol ; 59(10): 6321-6340, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35925441

ABSTRACT

Glial cell-line derived neurotrophic factor (GDNF) is a powerful astroglioma (AG) proliferation and migration factor that is highly expressed in AG cells derived from astrocytes. However, it is still unclear whether high levels of GDNF promote AG occurrence or if they are secondary to AG formation. We previously reported that high concentrations of GDNF (200 and 500 ng/mL) can inhibit DNA damage-induced rat primary astrocytes (RA) apoptosis, suggesting that high concentrations of GDNF may be involved in the malignant transformation of astrocytes to AG cells. Here we show that 200 ng/mL GDNF significantly increased the proliferation and migration ability of RA cells and human primary astrocytes (HA). This treatment also induced RA cells to highly express Pgf, Itgb2, Ibsp, Loxl2, Lif, Cxcl10, Serpine1, and other genes that enhance AG proliferation and migration. LOXL2 is an important AG occurrence and development promotion factor and was highly expressed in AG tissues and cells. High concentrations of GDNF promote LOXL2 expression and secretion in RA cells through GDNF family receptor alpha-1(GFRα1)/rearranged during transfection proto-oncogene (RET)/mitogen-activated protein kinase (MAPK)/phosphorylated cyclic AMP response element binding protein (pCREB) signaling. GDNF-induced LOXL2 significantly promotes RA and HA cell proliferation and migration, and increases the expression of Ccl2, Gbp5, MMP11, TNN, and other genes that regulate the extracellular microenvironment in RA cells. Our results demonstrate that high concentrations of GDNF activate LOXL2 expression and secretion via the GFRα1/RET/MAPK/pCREB signal axis, which leads to remodeling of the astrocyte extracellular microenvironment through molecules such as Ccl2, Gbp5, MMP11, TNN. This ultimately results in abnormal astrocyte proliferation and migration. Collectively, these findings suggest that high GDNF concentrations may promote the malignant transformation of astrocytes to AG cells.


Subject(s)
Astrocytes , Glial Cell Line-Derived Neurotrophic Factor , Amino Acid Oxidoreductases , Animals , Astrocytes/metabolism , Cell Proliferation , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Humans , Matrix Metalloproteinase 11 , Mitogen-Activated Protein Kinases , Proto-Oncogene Proteins c-ret , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...