Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Heliyon ; 10(9): e29896, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707273

ABSTRACT

In this study, ionic liquids (ILs) were used as organic modifiers by introducing montmorillonite nanolayers containing potential C and N active sites between the montmorillonite nanolayers. Organically modified montmorillonite (ILs-Mt-p) was further prepared by high-temperature pyrolysis under N2 and used for the removal of ofloxacin (OFL) by activated peroxymonosulfate (PMS). Combined with XPS and other characterization analyses, it was found that the catalyst materials prepared from different organic modifiers had similar surface functional groups and graphitized structures, but contained differences in the types and numbers of C and N active sites. The catalyst (3CPC-Mt-p) obtained after pyrolysis of montmorillonite modified with cetylpyridinium chloride (CPC) had optimal catalytic performance, in which graphitic C, graphitic N, and carbonyl group (C[bond, double bond]O) could synergistically promote the activation of PMS by electron transfer, and 77.3 % of OFL could be removed within 60 min. The effects of OFL concentration, initial pH, and anions on the effects of OFL removal by the 3CPC-Mt-p/PMS system were further investigated. Satisfactory degradation results were obtained over a wide pH range. Cl- promoted the system to degrade OFL, while the presence of SO42-, H2PO4- and HA showed some inhibition, but overall the 3CPC-Mt-p catalysts had a strong anti-interference ability, showing good application prospects. The quenching experiments and EPR tests showed that O2-- and 1O2 in the 3CPC-Mt-p/PMS system were the main reactive oxygen species for the degradation of OFL, and •OH was also involved in the reaction. This study provides ideas for the construction and modulation of active sites in mineral materials such as montmorillonite and broadens the application of montmorillonite composite catalysts in advanced oxidation processes for the treatment of antibiotic wastewater.

2.
Food Chem ; 449: 139192, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583404

ABSTRACT

The synergistic effects of ultrafine grinding and enzymolysis (cellulase and Laccase hydrolysis) alone or combined with carboxymethylation or acetylation on the hypoglycemic and antioxidant activities of oil palm kernel fibre (OPKEF) were studied for the first time. After these synergistic modifications, the microstructure of OPKEF became more porous, and its soluble fibre and total polyphenols contents, and surface area were all improved (P < 0.05). Superfine-grinding and enzymolysis combined with carboxymethylation treated OPKEF exhibited the highest viscosity (13.9 mPa∙s), inhibition ability to glucose diffusion (38.18%), and water-expansion volume (3.58 mL∙g-1). OPKEF treated with superfine-grinding and enzymolysis combined with acetylation showed the highest surface hydrophobicity (50.93) and glucose adsorption capacity (4.53 µmol∙g-1), but a lower α-amylase-inhibition ability. Moreover, OPKEF modified by superfine-grinding and enzymolysis had the highest inhibiting activity against α-amylase (25.78%). Additionally, superfine-grinding and enzymolysis combined with carboxymethylation or acetylation both improved the content and antioxidant activity of OPEKF's bounding polyphenols (P < 0.05).


Subject(s)
Antioxidants , Hypoglycemic Agents , Antioxidants/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Acetylation , Palm Oil/chemistry , alpha-Amylases/chemistry , alpha-Amylases/metabolism , Laccase/chemistry , Laccase/metabolism , Methylation , Cellulase/chemistry , Cellulase/metabolism , Hydrolysis , Viscosity , Seeds/chemistry , Food Handling , Polyphenols/chemistry , Polyphenols/pharmacology
3.
J Mater Chem B ; 12(18): 4389-4397, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38623831

ABSTRACT

A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.


Subject(s)
Bone Cements , Hydrazones , Isoniazid , Isoniazid/chemistry , Isoniazid/pharmacology , Bone Cements/chemistry , Animals , Hydrazones/chemistry , Hydrazones/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/administration & dosage , Mice , Drug Liberation , Polymethyl Methacrylate/chemistry , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
4.
J Orthop Surg Res ; 19(1): 169, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448971

ABSTRACT

OBJECTIVE: The objective of this study is to investigate the impact of four natural product extracts, namely, aloe-emodin, quercetin, curcumin, and tannic acid, on the in vitro bacteriostatic properties and biocompatibility of gentamicin-loaded bone cement and to establish an experimental groundwork supporting the clinical utility of antibiotic-loaded bone cements (ALBC). METHODS: Based on the components, the bone cement samples were categorized as follows: the gentamicin combined with aloe-emodin group, the gentamicin combined with quercetin group, the gentamicin combined with curcumin group, the gentamicin combined with tannic acid group, the gentamicin group, the aloe-emodin group, the quercetin group, the curcumin group, and the tannic acid group. Using the disk diffusion test, we investigated the antibacterial properties of the bone cement material against Staphylococcus aureus (n = 4). We tested cell toxicity and proliferation using the cell counting kit-8 (CCK-8) and examined the biocompatibility of bone cement materials. RESULTS: The combination of gentamicin with the four natural product extracts resulted in significantly larger diameters of inhibition zones compared to gentamicin alone, and the difference was statistically significant (P < 0.05). Except for the groups containing tannic acid, cells in all other groups showed good proliferation across varying time intervals without displaying significant cytotoxicity (P < 0.05). CONCLUSION: In this study, aloe-emodin, quercetin, curcumin, and tannic acid were capable of enhancing the in vitro antibacterial performance of gentamicin-loaded bone cement against S. aureus. While the groups containing tannic acid displayed moderate cytotoxicity in in vitro cell culture, all other groups showed no discernible cytotoxic effects.


Subject(s)
Anthraquinones , Biological Products , Curcumin , Emodin , Polyphenols , Gentamicins/pharmacology , Bone Cements/pharmacology , Curcumin/pharmacology , Quercetin , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology
5.
Acta Pharmacol Sin ; 45(5): 900-913, 2024 May.
Article in English | MEDLINE | ID: mdl-38225393

ABSTRACT

Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.


Subject(s)
Alzheimer Disease , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Disease Models, Animal , Transient Receptor Potential Channels , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Autophagy/drug effects , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Humans , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Signal Transduction/drug effects , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics
6.
Ann Clin Transl Neurol ; 11(1): 30-44, 2024 01.
Article in English | MEDLINE | ID: mdl-37902278

ABSTRACT

OBJECTIVE: Despite amyloid deposition as a hallmark of hereditary transthyretin amyloidosis (ATTRv) with polyneuropathy, this pathology could not completely account for nerve degeneration. ATTRv patients frequently have vasomotor symptoms, but microangiopathy hypothesis in ATTRv was not systemically clarified. METHODS: This study examined the vascular pathology of sural nerves in ATTRv patients with transthyretin (TTR) mutation of p.Ala117Ser (TTR-A97S), focusing on morphometry and patterns of molecular expression in relation to nerve degeneration. We further applied human microvascular endothelial cell (HMEC-1) culture to examine the direct effect of TTR-A97S protein on endothelial cells. RESULTS: In ATTRv nerves, there was characteristic microangiopathy compared to controls: increased vessel wall thickness and decreased luminal area; both were correlated with the reduction of myelinated fiber density. Among the components of vascular wall, the area of collagen IV in ATTRv nerves was larger than that of controls. This finding was validated in a cell model of HMEC-1 culture in which the expression of collagen IV was upregulated after exposure to TTR-A97S. Apoptosis contributed to the endothelial cell degeneration of microvasculatures in ATTRv endoneurium. ATTRv showed prothrombotic status with intravascular fibrin deposition, which was correlated with (1) increased tissue factor and coagulation factor XIIIA and (2) reduced tissue plasminogen activator. This cascade led to intravascular thrombin deposition, which was colocalized with upregulated p-selectin and thrombomodulin, accompanied by complement deposition and macrophages infiltration, indicating thromboinflammation in ATTRv. INTERPRETATION: Microangiopathy with thromboinflammation is characteristic of advanced-stage ATTRv nerves, which provides an add-on mechanism and therapeutic target for nerve degeneration.


Subject(s)
Amyloid Neuropathies, Familial , Thrombosis , Tissue Plasminogen Activator , Humans , Thromboinflammation , Endothelial Cells , Inflammation , Nerve Degeneration , Collagen
7.
Mol Neurobiol ; 61(2): 707-724, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37656312

ABSTRACT

The role of heat shock protein 27 (HSP27), a chaperone, in neuropathic pain after nerve injury has not been systematically surveyed despite its neuroprotective and regeneration-promoting effects. In this study, we found that HSP27 expression in sensory neurons of the dorsal root ganglia (DRG) mediated nerve injury-induced neuropathic pain. Neuropathic pain behaviors were alleviated by silencing HSP27 in the DRG of a rat spinal nerve ligation (SNL) model. Local injection of an HSP27-overexpression construct into the DRG of naïve rats elicited neuropathic pain behaviors. HSP27 interacted with a purinergic receptor, P2X3, and their expression patterns corroborated the induction and reversal of neuropathic pain according to two lines of evidence: colocalization immunohistochemically and immunoprecipitation biochemically. In a cell model cotransfected with HSP27 and P2X3, the degradation rate of P2X3 was reduced in the presence of HSP27. Such an alteration was mediated by reducing P2X3 ubiquitination in SNL rats and was reversed after silencing HSP27 in the DRGs of SNL rats. In summary, the interaction of HSP27 with P2X3 provides a new mechanism of injury-induced neuropathic pain that could serve as an alternative therapeutic target.


Subject(s)
HSP27 Heat-Shock Proteins , Neuralgia , Animals , Rats , Ganglia, Spinal/metabolism , HSP27 Heat-Shock Proteins/metabolism , Hyperalgesia/metabolism , Neuralgia/metabolism , Rats, Sprague-Dawley , Spinal Nerves/metabolism , Receptors, Purinergic P2X3/metabolism
8.
Nat Commun ; 14(1): 8393, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110369

ABSTRACT

Ferroptosis is an iron-dependent programmed cell death associated with severe kidney diseases, linked to decreased glutathione peroxidase 4 (GPX4). However, the spatial distribution of renal GPX4-mediated ferroptosis and the molecular events causing GPX4 reduction during ischemia-reperfusion (I/R) remain largely unknown. Using spatial transcriptomics, we identify that GPX4 is situated at the interface of the inner cortex and outer medulla, a hyperactive ferroptosis site post-I/R injury. We further discover OTU deubiquitinase 5 (OTUD5) as a GPX4-binding protein that confers ferroptosis resistance by stabilizing GPX4. During I/R, ferroptosis is induced by mTORC1-mediated autophagy, causing OTUD5 degradation and subsequent GPX4 decay. Functionally, OTUD5 deletion intensifies renal tubular cell ferroptosis and exacerbates acute kidney injury, while AAV-mediated OTUD5 delivery mitigates ferroptosis and promotes renal function recovery from I/R injury. Overall, this study highlights a new autophagy-dependent ferroptosis module: hypoxia/ischemia-induced OTUD5 autophagy triggers GPX4 degradation, offering a potential therapeutic avenue for I/R-related kidney diseases.


Subject(s)
Acute Kidney Injury , Ferroptosis , Reperfusion Injury , Humans , Kidney , Autophagy , Ischemia
9.
Mol Neurobiol ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906389

ABSTRACT

In chronic diabetic neuropathy (DN), the cellular mechanisms of neuropathic pain remain unclear. Protein kinase C epsilon (PKCε) is an intracellular signaling molecule that mediates chronic pain. This paper addresses the long-term upregulated PKCε in DN associated with endoplasmic reticulum (ER) stress and autophagic formation and correlates to chronic neuropathic pain. We found that thermal hyperalgesia and mechanical allodynia course development were associated with PKCε upregulation after DN but not skin denervation. Pathologically, PKCε upregulation was associated with the expression of inositol-requiring enzyme 1α (IRE1α; ER stress-related molecule) and ubiquitin D (UBD), which are involved in the ubiquitin-proteasome system (UPS)-mediated degradation of misfolded proteins under ER stress. Manders coefficient analyses revealed an approximately 50% colocalized ratio for IRE1α(+):PKCε(+) neurons (0.34-0.48 for M1 and 0.40-0.58 for M2 Manders coefficients). The colocalized coefficients of UBD/PKCε increased (M1: 0.33 ± 0.03 vs. 0.77 ± 0.04, p < 0.001; M2: 0.29 ± 0.05 vs. 0.78 ± 0.04; p < 0.001) in the acute DN stage. In addition, the regulatory subunit p85 of phosphoinositide 3-kinase, which is involved in regulating insulin signaling, exhibited similar expression patterns to those of IRE1α and UBD; for example, it had highly colocalized ratios to PKCε. The ultrastructural examination further confirmed that autophagic formation was associated with PKCε upregulation. Furthermore, PKCεv1-2, a PKCε specific inhibitor, reverses neuropathic pain, ER stress, and autophagic formation in DN. This finding suggests PKCε plays an upstream molecule in DN-associated neuropathic pain and neuropathology and could provide a potential therapeutic target.

10.
Zhongguo Zhen Jiu ; 43(9): 982-9, 2023 Sep 12.
Article in Chinese | MEDLINE | ID: mdl-37697870

ABSTRACT

OBJECTIVE: To observe the effects of electroacupuncture on threshold of pain, gait, proliferation and differentiation of muscle satellite cell in rats with acute blunt trauma of gastrocnemius muscle, and to explore the possible mechanism of electroacupuncture in promoting the repair of acute injury of skeletal muscle. METHODS: A total of 48 SD rats were randomly divided into a blank group (6 rats), a model group (24 rats) and an electroacupuncture group (18 rats). In the model group and the electroacupuncture group, the model of acute blunt trauma of gastrocnemius muscle was established by self-made impactor. In the electroacupuncture group, electroacupuncture was applied at "Chengshan" (BL 57) and "Yanglingquan" (GB 34) on the right side, with disperse-dense wave, in frequency of 2 Hz/100 Hz, once a day, 30 min each time. Electroacupuncture intervention was performed for 3, 7 and 14 days according to the sampling time. On the 1st, 3rd, 7th and 14th days after modeling, the mechanical withdrawal pain threshold of hindfoot was detected by Von Frey method; the standing time and the maximum contact area of the right hindfoot were recorded by Cat Walk XTTM animal gait analysis instrument; the morphology of the right gastrocnemius muscle and the number of inflammatory cells were observed by HE staining; the positive expression of paired box gene 7 (Pax7) and myogenic differentiation (MyoD) of the right gastrocnemius muscle was detected by immunofluorescence. RESULTS: After modeling, the muscle fiber rupture and massive infiltration of red blood cells and inflammatory cells were observed in the right gastrocnemius muscle; after electroacupuncture intervention, the morphology of muscle fiber was intact and the infiltration of inflammatory cells was improved. Compared with the blank group, in the model group, the differences of mechanical withdrawal pain threshold between the left and right foot were increased (P<0.05), the standing time was shortened and the maximum contact area of the right hindfoot was decreased (P<0.05), the number of inflammatory cells and the positive expression of Pax7 and MyoD of the right gastrocnemius muscle were increased (P<0.05) on the 1st, 3rd, 7th and 14th days after modeling. Compared with the model group, in the electroacupuncture group, the differences of mechanical withdrawal pain threshold were decreased (P<0.05), the standing time was prolonged (P<0.05), the number of inflammatory cells of right gastrocnemius muscle was decreased (P<0.05) on the 7th and 14th days after modeling; the maximum contact area of the right hindfoot was increased (P<0.05), the positive expression of MyoD of the right gastrocnemius muscle was increased (P<0.05) on the 3rd, 7th and 14th days after modeling; the positive expression of Pax7 of the right gastrocnemius muscle was increased (P<0.05) on the 3rd day after modeling. CONCLUSION: Electroacupuncture can effectively improve the pain threshold and gait in rats with acute blunt trauma of gastrocnemius muscle, and promote the repair of skeletal muscle injury, the mechanism may be related to the up-regulation of Pax7 and MyoD, so as to promoting the proliferation and differentiation of muscle satellite cell.


Subject(s)
Electroacupuncture , Satellite Cells, Skeletal Muscle , Wounds, Nonpenetrating , Animals , Rats , Rats, Sprague-Dawley , Muscle, Skeletal , Gait , Pain , Cell Differentiation , Cell Proliferation
11.
Front Pharmacol ; 14: 1225256, 2023.
Article in English | MEDLINE | ID: mdl-37601067

ABSTRACT

Introduction: The oil palm kernel (OPK) expeller is the main byproduct of palm oil, but its utilization is limited. Methods: To obtain angiotensin-I-converting enzyme (ACE) inhibition peptides with Zn-chelating capacity, defatted oil palm kernel globulin hydrolysates (DOPKGH) were subjected to Sephadex G-15 gel electrophoresis, reverse-phase high liquid performance chromatography, and UPLC-ESI-MS/MS analysis. Results and discussion: Five representative oligopeptides, including Gln-Arg-Leu-Asp-Arg-Cys-Lys (QRLERCK), Leu-Leu-Leu-Gly-Val-Ala-Asn-Tyr-Arg (LLLGVANYR), Arg-Ala-Asp-Val-Phe-Asn-Pro-Arg (RADVFNPR), Arg-Val-Ile-Lys-Tyr-Asn-Gly-Gly-Gly-Ser-Gly (RVIKYNGGGSG), and Glu-Val-Pro-Gln-Ala-Tyr-Ile-Pro (EVPQAYIP), without potential toxicity and allergenicity, were identified in DOPKGH. Of these, only EVPQAYIP showed both ACE-inhibitory activity (IC50: 102.75 µmol/L) and Zn-chelating capacity (11.69 mg/g). Molecular docking and inhibition kinetics showed that EVPQAYIP was a competitive inhibitor of ACE because it could bind to Glu384, Lys511, and Gln281 (belonging to the central S1 and S2 pockets, respectively) of ACE. Moreover, EVPQAYIP affects zinc tetrahedral coordination in ACE by binding to Glu411; the amino and carboxyl groups of EVPQAYIP chelate with zinc ions. During gastrointestinal digestion, the ACE inhibitory activity of EVPQAYIP was relatively stable. Additionally, EVPQAYIP enhanced zinc stability in the intestine and exerted antihypertensive effects in spontaneous hypertensive rats. These results suggest the potential application of OPK peptides as ingredients in antihypertensive agents or zinc fortification.

12.
Chem Asian J ; 18(18): e202300480, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37370258

ABSTRACT

Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules.

13.
Medicine (Baltimore) ; 102(21): e33869, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233439

ABSTRACT

RATIONALE: Colonic extranodal mucosa-associated lymphoid tissue lymphoma as a cause of hematochezia is rare. Here, we report a case of colonic extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALToma) with presentation of freshy bloody stool and successfully treated by endoscopic mucosal resection. PATIENT CONCERNS: This case was a 69-year-old woman with history of hypertension, reflux esophagitis, and peptic ulcer. She had several episodes of hematochezia and thus sought medical attention at the outpatient clinic. DIAGNOSES: Colonoscopy revealed a 12-mm semipedunculated lesion in the ascending colon. Histopathological examination and immunochemistry were compatible with colonic extranodal mucosa-associated lymphoid tissue lymphoma. INTERVENTIONS: Endoscopic mucosal resection was done for tumor removal and hemoclipping was done to achieve hemostasis. OUTCOMES: The patient remained well without recurrence during 3 years of outpatient follow-up. LESSON: Colonic MALToma is a rare disease, and could present as hematochezia. En bloc endoscopic resection could achieve long-term remission. The prognosis of colonic MALToma is excellent with its indolent characteristics.


Subject(s)
Lymphoma, B-Cell, Marginal Zone , Peptic Ulcer , Female , Humans , Aged , Lymphoma, B-Cell, Marginal Zone/complications , Lymphoma, B-Cell, Marginal Zone/diagnosis , Lymphoma, B-Cell, Marginal Zone/surgery , Colonoscopy , Diagnosis, Differential , Gastrointestinal Hemorrhage/etiology , Gastrointestinal Hemorrhage/surgery , Gastrointestinal Hemorrhage/diagnosis , Peptic Ulcer/diagnosis
14.
Int J Psychol ; 58(4): 341-350, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36811177

ABSTRACT

This study explored whether altruistic behaviour would decrease agent's unhealthy food intake, and whether vitality and state self-control would sequentially mediate this effect based on the Self-Determination Theory Model of Vitality. It included 1019 college students in total across three studies. Study 1 was a laboratory experiment. By framing a physical task as a helping behaviour or a neutral experimental task, we examined whether these framed tasks impacted participants' subsequent unhealthy food intake levels. Study 2 was an online investigation measuring the relationship between donation (vs. no donation) behaviour and participant's estimated unhealthy food intake level. Study 3 was an online experiment with a mediation test. By random assignment of conducting a donation behaviour versus a neutral task, we examined whether these behaviours affected participants' vitality, state self-control, and estimated unhealthy food intake levels. In addition, we tested a sequential mediation model with vitality and state self-control as the mediators. Both unhealthy and healthy foods were included in Study 2 and 3. Results showed that altruistic behaviour could decrease agent's unhealthy (but not healthy) food intake, and this effect was sequentially mediated by vitality and state self-control. The findings highlight that altruistic acts may buffer agents against unhealthy eating behaviour.


Subject(s)
Feeding Behavior , Self-Control , Humans , Altruism , Eating
15.
Phys Chem Chem Phys ; 24(43): 26853-26862, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36317503

ABSTRACT

The emergence and development of radical luminescent materials is a huge breakthrough toward high-performance organic light-emitting diodes (OLEDs) without spin-statistical limits. Herein, we design a series of radicals based on tris(2,4,6-trichlorophenyl)methyl (TTM) by combining skeleton-engineering and periphery-engineering strategies, and present some insights into how different chemical modifications can modulate the chemical stability and luminescence properties of radicals by quantum chemistry methods. Firstly, through the analysis of the geometric structure changes from the lowest doublet excited state (D1) to the doublet ground state (D0) states, the emission energy differences between the BN orientation isomers are explained, and it is revealed that the radical with a smaller dihedral angle difference can more effectively suppress the geometric relaxation of the excited states and bring a higher emission energy. Meanwhile, a comparison of the excited state properties in different radicals can help us to disclose the luminescence behavior, that is, the enhanced luminescent intensity of the radical is caused by the intensity borrowing between the charge transfer (CT) state and the dark locally excited (LE) state. In addition, an efficient algorithm for calculating the internal conversion rate (kIC) is introduced and implemented, and the differences in kIC values between designed radicals are explained. More specifically, the delocalization of hole and electron wave functions can reduce nonadiabatic coupling matrix elements (NACMEs), thus hindering the non-radiative decay process. Finally, the double-regulation of chemical stability and luminescence properties was realized through the synergistic effect of skeleton-engineering and periphery-engineering, and to screen the excellent doublet emitter (BN-41-MPTTM) theoretically.

16.
Prz Gastroenterol ; 17(2): 116-122, 2022.
Article in English | MEDLINE | ID: mdl-35664029

ABSTRACT

Introduction: Between 42% and 77% of patients with distal malignant biliary obstruction (MBO) suffer from pancreatic carcinoma (PC). Aim: To analyse the clinical efficacy of stenting accompanied by high-intensity focused ultrasound (HIFU) ablation in patients with distal MBO from PC. Material and methods: Relevant articles published through March 2021 were identified in the Pubmed, Cochrane Library, Embase, Wanfang, VIP, and CNKI databases. RevMan v5.3 and Stata v12.0 were used for the meta-analysis. Results: Twenty-nine articles were initially identified, and 5 of these were eventually included. These articles described 142 patients who underwent biliary stenting alone and 132 patients who underwent biliary stenting with HIFU ablation. The pooled Δ total bilirubin (TBIL) values were comparable between the 2 treatment groups (p = 0.10). The pooled stent dysfunction rate was significantly greater in the group with stenting alone (p = 0.03), and the pooled HR for the stent patency duration indicated that the duration of stent patency was increased in the stenting with HIFU ablation group (p < 0.0001). Overall survival rates were significantly longer in the stenting with HIFU ablation group (p < 0.0001). HIFU ablation was associated with an 80% pooled clinical response rate. The pooled cholangitis (p = 0.47) and pancreatitis (p = 0.56) rates were comparable between the 2 groups. Funnel plots did not reveal any significant evidence of endpoint-associated publication bias. Conclusions: Stenting with HIFU ablation increased both stent patency and overall survival in patients with distal MBO caused by PC compared to stenting alone.

17.
Int J Oncol ; 60(6)2022 Jun.
Article in English | MEDLINE | ID: mdl-35417036

ABSTRACT

The chromosome segregation 1­like (CSE1L) protein, which regulates cellular mitosis and apoptosis, was previously found to be overexpressed in colorectal cancer (CRC) cells harboring mutations. Therefore, regulating CSE1L expression may confer chemotherapeutic effects against CRC. The gut microflora can regulate gene expression in colonic cells. In particular, metabolites produced by the gut microflora, including the short­chain fatty acid butyrate, have been shown to reduce CRC risk. Butyrates may exert antioncogenic potential in CRC cells by modulating p53 expression. The present study evaluated the association between CSE1L expression and butyrate treatment from two non­transformed colon cell lines (CCD­18Co and FHC) and six CRC cell lines (LS 174T, HCT116 p53+/+, HCT116 p53­/­, Caco­2, SW480 and SW620). Lentiviral knockdown of CSE1L and p53, reverse transcription­quantitative PCR (CSE1L, c­Myc and p53), western blotting [CSE1L, p53, cyclin (CCN) A2, CCNB2 and CCND1], wound healing assay (cell migration), flow cytometry (cell cycle analysis) and immunofluorescence staining (CSE1L and tubulin) were adopted to verify the effects of butyrate on CSE1L­expressing CRC cells. The butyrate­producing gut bacteria Butyricicoccus pullicaecorum was administered to mice with 1,2­dimethylhydrazine­induced colon tumors before the measurement of CSE1L expression. The effects of B. pullicaecorum on CSE1L expression were then assessed by immunohistochemical staining for CSE1L and p53 in tissues from CRC­bearing mice. Non­cancerous colon cells with the R273H p53 mutation or CRC cells haboring p53 mutations were found to exhibit significantly higher CSE1L expression levels. CSE1L knockdown in HCT116 p53­/­ cells resulted in G1­and G2/M­phase cell cycle arrest. Furthermore, in HCT116 p53­/­ cells, CSE1L expression was already high at interphase, increased at prophase, peaked during metaphase before declining at cytokinesis but remained relatively high compared with that in HCT116 expressing wild­type p53. Significantly decreased expression levels of CSE1L were also observed in HCT116 p53­/­ cells that were treated with butyrate for 24 h. In addition, the migration of HCT116 p53­/­ cells was significantly decreased after CSE1L knockdown or butyrate treatment. Tumors with more intense nuclear p53 staining and weaker CSE1L staining were found in mice bearing DMH/DSS­induced CRC that were administered with B. pullicaecorum. Taken together, the results indicated that butyrate can impair CSE1L­induced tumorigenic potential. In conclusion, butyrate­producing microbes, such as B. pullicaecorum, may reverse the genetic distortion caused by p53 mutations in CRC by regulating CSE1L expression levels.


Subject(s)
Butyrates , Cellular Apoptosis Susceptibility Protein , Colorectal Neoplasms , Tumor Suppressor Protein p53 , Animals , Apoptosis , Butyrates/pharmacology , Caco-2 Cells , Cell Proliferation , Cellular Apoptosis Susceptibility Protein/genetics , Chromosome Segregation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Dietary Supplements , HCT116 Cells , Humans , Mice , Mutation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
18.
Acta Pharmacol Sin ; 43(10): 2511-2526, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35217810

ABSTRACT

Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson's disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential use in treating PD. Thus we synthesized various derivatives of Cory B to find more potent autophagy inducers with improved brain bioavailability. In this study, we evaluated the autophagy-enhancing effect of CB6 derivative and its neuroprotective action against PD in vitro and in vivo. We showed that CB6 (5-40 µM) dose-dependently accelerated autophagy flux in cultured N2a neural cells through activating the PIK3C3 complex and promoting PI3P production. In MPP+-treated PC12 cells, CB6 inhibited cell apoptosis and increased cell viability by inducing autophagy. In MPTP-induced mouse model of PD, oral administration of CB6 (10, 20 mg· kg-1· d-1, for 21 days) significantly improved motor dysfunction and prevented the loss of dopaminergic neurons in the striatum and substantia nigra pars compacta. Collectively, compound CB6 is a brain-permeable autophagy enhancer via PIK3C3 complex activation, which may help the prevention or treatment of PD.


Subject(s)
Alkaloids , Neuroprotective Agents , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Alkaloids/pharmacology , Animals , Autophagy , Class III Phosphatidylinositol 3-Kinases/pharmacology , Dopaminergic Neurons , Indoles , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/pathology , Rats , Spiro Compounds
19.
J Asian Nat Prod Res ; 24(2): 163-169, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33844616

ABSTRACT

A new amide, named rehmagluamide (1), and a new hydroxycinnamic acid derivative, named nepetoidin F (2), together with six known compounds, 2'-O-methyluridine (3), puroglutamic acid (4), biliverdic acid (5), peterolactam (6), nicotinic acid (7), nicotinamide (8), were isolated from the fresh roots of Rehmannia glutinosa. All the structures of compounds were identified by the interpretation of their spectroscopic data and comparison with those reported in the literatures. The protective effects of compounds 1-7 on normal rat kidney tubule epithelioid (NRK-52e) cells injury induced by LPS were investigated. The results indicated that compounds 1, 2, and 7 exhibited protective effects against LPS-induced NRK 52e cells injury.


Subject(s)
Rehmannia , Amides , Animals , Coumaric Acids/pharmacology , Molecular Structure , Plant Roots , Rats
20.
Int J Mol Sci ; 22(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34502261

ABSTRACT

SOX2 is an oncogenic transcription factor overexpressed in nearly half of the basal-like triple-negative breast cancers associated with very poor outcomes. Targeting and inhibiting SOX2 is clinically relevant as high SOX2 mRNA levels are positively correlated with decreased overall survival and progression-free survival in patients affected with breast cancer. Given its key role as a master regulator of cell proliferation, SOX2 represents an important scaffold for the engineering of dominant-negative synthetic DNA-binding domains (DBDs) that act by blocking or interfering with the oncogenic activity of the endogenous transcription factor in cancer cells. We have synthesized an interference peptide (iPep) encompassing a truncated 24 amino acid long C-terminus of SOX2 containing a potential SOX-specific nuclear localization sequence, and the determinants of the binding of SOX2 to the DNA and to its transcription factor binding partners. We found that the resulting peptide (SOX2-iPep) possessed intrinsic cell penetration and promising nuclear localization into breast cancer cells, and decreased cellular proliferation of SOX2 overexpressing cell lines. The novel SOX2-iPep was found to exhibit a random coil conformation predominantly in solution. Molecular dynamics simulations were used to characterize the interactions of both the SOX2 transcription factor and the SOX2-iPep with FGF4-enhancer DNA in the presence of the POU domain of the partner transcription factor OCT4. Predictions of the free energy of binding revealed that the iPep largely retained the binding affinity for DNA of parental SOX2. This work will enable the future engineering of novel dominant interference peptides to transport different therapeutic cargo molecules such as anti-cancer drugs into cells.


Subject(s)
Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , SOXB1 Transcription Factors/chemistry , SOXB1 Transcription Factors/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , DNA/metabolism , Female , Fibroblast Growth Factor 4/chemistry , Humans , Kaplan-Meier Estimate , Mice , Molecular Dynamics Simulation , Octamer Transcription Factor-3/chemistry , Protein Binding , SOXB1 Transcription Factors/genetics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...