Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genome Ed ; 4: 843885, 2022.
Article in English | MEDLINE | ID: mdl-35465025

ABSTRACT

Background: Gene correction via homology directed repair (HDR) in patient-derived induced pluripotent stem (iPS) cells for regenerative medicine are becoming a more realistic approach to develop personalized and mutation-specific therapeutic strategies due to current developments in gene editing and iPSC technology. Cystic fibrosis (CF) is the most common inherited disease in the Caucasian population, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Since CF causes significant multi-organ damage and with over 2,000 reported CFTR mutations, CF patients could be one prominent population benefiting from gene and cell therapies. When considering gene-editing techniques for clinical applications, seamless gene corrections of the responsible mutations, restoring native "wildtype" DNA sequence without remnants of drug selectable markers or unwanted DNA sequence changes, would be the most desirable approach. Result: The studies reported here describe the seamless correction of the W1282X CFTR mutation using CRISPR/Cas9 nickases (Cas9n) in iPS cells derived from a CF patient homozygous for the W1282X Class I CFTR mutation. In addition to the expected HDR vector replacement product, we discovered another class of HDR products resulting from vector insertion events that created partial duplications of the CFTR exon 23 region. These vector insertion events were removed via intrachromosomal homologous recombination (IHR) enhanced by double nicking with CRISPR/Cas9n which resulted in the seamless correction of CFTR exon 23 in CF-iPS cells. Conclusion: We show here the removal of the drug resistance cassette and generation of seamless gene corrected cell lines by two independent processes: by treatment with the PiggyBac (PB) transposase in vector replacements or by IHR between the tandemly duplicated CFTR gene sequences.

2.
Br J Haematol ; 192(2): 395-404, 2021 01.
Article in English | MEDLINE | ID: mdl-33216968

ABSTRACT

Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of ß-thalassaemia. The homozygous mutation c.-196 C>T in the Aγ-globin (HBG1) promoter, which causes Sardinian δß0 -thalassaemia, is able to completely rescue the ß-major thalassaemia phenotype caused by the ß0 39-thalassaemia mutation, ensuring high levels of fetal haemoglobin synthesis during adulthood. Here, we describe a CRISPR/Cas9 genome-editing approach, combined with the non-homologous end joining (NHEJ) pathway repair, aimed at reproducing the effects of this naturally occurring HPFH mutation in both HBG promoters. After selecting the most efficient guide RNA in K562 cells, we edited the HBG promoters in human umbilical cord blood-derived erythroid progenitor 2 cells (HUDEP-2) and in haematopoietic stem and progenitor cells (HSPCs) from ß0 -thalassaemia patients to assess the therapeutic potential of HbF induction. Our results indicate that small deletions targeting the -196-promoter region restore high levels of fetal haemoglobin (HbF) synthesis in all cell types tested. In pools of HSPCs derived from homozygous ß0 39-thalassaemia patients, a 20% editing determined a parallel 20% increase of HbF compared to unedited pools. These results suggest that editing the region of HBG promoters around the -196 position has the potential to induce therapeutic levels of HbF in patients with most types of ß-thalassaemia irrespective of the ß-globin gene (HBB) mutations.


Subject(s)
Fetal Hemoglobin/genetics , Gene Editing/methods , Hematopoietic Stem Cells/metabolism , beta-Thalassemia/genetics , CRISPR-Cas Systems , Cells, Cultured , HEK293 Cells , Humans , K562 Cells , Up-Regulation
3.
Mol Ther Nucleic Acids ; 5: e273, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26730810

ABSTRACT

Cystic fibrosis (CF) is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs) have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs) and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ~100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt) airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways.

4.
Radiology ; 249(2): 560-71, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18780824

ABSTRACT

PURPOSE: To provide evidence that vascular endothelial growth factor (VEGF) genes delivered transendocardially with magnetic resonance (MR) imaging guidance may neovascularize or improve vascular recruitment in occlusive infarction. MATERIALS AND METHODS: All experimental procedures received approval from the institutional committee on animal research. Dogs with permanent coronary artery occlusion were imaged twice (3 days after occlusion for assessment of acute infarction; a mean of 50 days after occlusion +/- 3 [standard error of the mean] for assessment of chronic infarction). A mixture of plasmid VEGF and plasmid LacZ (n = 6, treated animals) or plasmid LacZ and sprodiamide (n = 6, placebo control animals) was delivered to four sites. MR fluoroscopy was used to target and monitor delivery of genes. The effectiveness of this delivery approach was determined by using MR imaging methods to assess perfusion, left ventricular (LV) function, myocardial viability, and infarct resorption. Histologic evaluation of neovascularization was then performed. RESULTS: MR fluoroscopic guidance of injectates was successful in both groups. Treated animals with chronic, but not those with acute, infarction showed the following differences compared with control animals: (a) steeper mean maximum upslope perfusion (200 sec(-1) +/- 32 vs 117 sec(-1) +/- 15, P = .02), (b) higher peak signal intensity (1667 arbitrary units +/- 100 vs 1132 arbitrary units +/- 80, P = .002), (c) increased ejection fraction (from 27.9% +/- 1.2 to 35.3% +/- 1.6, P = .001), (d) smaller infarction size (as a percentage of LV mass) at MR imaging (8.5% +/- 0.9 vs 11.3% +/- 0.9, P = .048) and triphenyltetrazolium chloride staining (9.4% +/- 1.5 vs 12.7% +/- 0.4, P = .05), and (e) higher vascular density (as number of vessels per square millimeter) at the border (430 +/- 117 vs 286 +/- 19, P = .0001) and core (307 +/- 112 vs 108 +/- 17, P = .0001). CONCLUSION: The validity of plasmid VEGF gene delivered with MR fluoroscopic guidance into occlusive infarction was confirmed by neovascularization associated with improved perfusion, LV function, and infarct resorption.


Subject(s)
Coronary Occlusion/drug therapy , Genetic Therapy/methods , Magnetic Resonance Imaging, Interventional/methods , Vascular Endothelial Growth Factor A/pharmacology , Analysis of Variance , Animals , Contrast Media/administration & dosage , Dogs , Meglumine/administration & dosage , Organometallic Compounds/administration & dosage , Vascular Endothelial Growth Factor A/genetics
5.
Front Biosci ; 11: 3190-8, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16720385

ABSTRACT

Delivery of therapeutic genes represents a fascinating possibility to accelerate injury-repairing process in tissues that are otherwise difficult to treat, such as cerebral ischemia. Current studies indicate that gene transfer-induced focal angiogenesis in the brain may provide an important therapeutic strategy. In the present study, we reported the efficacy of induction of angiogenesis with an adeno-associated virus (AAV) vector expressing the 165 amino acid isoform of vascular endothelial growth factor (VEGF165). We found AAV serotype 1 has more efficiency in transduction of the brain tissue than AAV serotype 2. Quantitative vessel counting showed that microvessels in AAV-VEGF transduced mice significantly increased from 1 week up to 12 weeks compared to the control groups (AAV-VEGF: 316+/-58 vs. AAV-lacZ: 180+/-34 and saline: 152+/-35 vessels/mm2, at 6 weeks, p<0.05). Proliferating cell nuclear antigen (PCNA) staining confirmed these microvessels were actively proliferating. Double-labeled fluorescence staining demonstrated that neurons, astrocytes, and endothelial cells could express VEGF following AAV-VEGF gene transfer. AAV vectors did not elicit a detectable inflammatory response, cell loss or neuronal damage. Our data underline the importance of angiogenesis in the brain tissue and indicate that VEGF gene transfer might present a valuable approach to treat brain ischemic disorders.


Subject(s)
Brain/blood supply , Dependovirus/genetics , Genetic Therapy , Neovascularization, Physiologic/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Brain/cytology , Brain/metabolism , Brain Ischemia/therapy , Cell Proliferation , Dependovirus/classification , Gene Transfer Techniques , Genetic Vectors , Lac Operon , Male , Mice , Mice, Inbred Strains , Serotyping , Transduction, Genetic , Vascular Endothelial Growth Factor A/therapeutic use
6.
Mol Ther ; 7(1): 44-51, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12573617

ABSTRACT

Critical limb ischemia is an important clinical problem that often leads to disability and limb loss. Vascular endothelial growth factor (VEGF), delivered either as recombinant protein or as gene therapy, has been shown to promote both collateral artery formation (arteriogenesis) and capillary angiogenesis in animal models of hindlimb ischemia. However, none of the previous studies has demonstrated an improvement in tissue hypoxia, the condition that drives the molecular response to ischemia. Furthermore, the optimal vector and route of gene delivery have not been determined. Recently, adeno-associated viral (AAV) vectors, which efficiently transduce skeletal muscle and produce sustained transgene expression, have been used as gene therapy vectors. We asked whether an intra-arterial injection of AAV-VEGF(165) normalizes muscle oxygen tension by increasing skeletal muscle oxygen tension, and promotes arteriogenesis and angiogenesis in a rat model of severe hindlimb ischemia. We found that AAV-VEGF treatment normalized muscle oxygen tension in the ischemic limb. In contrast, vehicle and AAV-lacZ-treated limbs remained ischemic. Collateral arteries were more numerous in AAV-VEGF-treated rats, but, surprisingly, capillaries were not. We conclude that intra-arterial AAV-mediated gene transfer of AAV-VEGF(165) normalizes muscle oxygen tension and leads to arteriogenesis in rats with severe hindlimb ischemia.


Subject(s)
Dependovirus/genetics , Endothelial Growth Factors/genetics , Gene Transfer Techniques , Genetic Vectors , Hindlimb/blood supply , Intercellular Signaling Peptides and Proteins/genetics , Ischemia/physiopathology , Lymphokines/genetics , Muscle, Skeletal/blood supply , Oxygen/metabolism , Animals , Base Sequence , DNA Primers , Endothelial Growth Factors/blood , Intercellular Signaling Peptides and Proteins/blood , Lymphokines/blood , Neovascularization, Physiologic , Rats , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors , beta-Galactosidase/genetics
7.
Blood Cells Mol Dis ; 29(2): 145-58, 2002.
Article in English | MEDLINE | ID: mdl-12490281

ABSTRACT

The erythroid-specific enhancer within hypersensitivity site 2 (HS2) of the human beta-globin locus control region is required for high level globin gene expression. We used an oligonucleotide of the NF-E2 tandem repeat, within HS2, as recognition site probe to screen a K562 cDNA library for interacting transcription factors. A 2.3 kb full length cDNA encoding the b-zip transcription factor MafF was isolated. MafF can form both homodimers and high affinity heterodimers with Nrf1, Nrf2 and Nf-E2, three members of the CNC-bZip family. Despite obvious structural similarities with the other small Maf proteins, MafF differs in its tissue distribution and its inability to repress transcription when overexpressed as homodimer. In fact, in different cell lines and on different promoters (gamma-globin, beta-globin and glutamylcysteine synthetase genes) the MafF homodimers do not appreciably affect transcription of target promoters, whereas MafF/CNC member heterodimers act as weak transcriptional activators. Even though MafF was cloned using probes derived from the globin LCR, it is in the context of the GCSl promoter and in combination with Jun that MafF shows a rather distinct and specific regulatory role. These observations suggest that a complex network of small Maf and CNC-AP1 protein interactions might be involved in regulating transcription in diverse tissues or developmental stages.


Subject(s)
Carrier Proteins/genetics , DNA-Binding Proteins/metabolism , Globins/genetics , Nuclear Proteins/physiology , Transcription Factors/metabolism , Transcriptional Activation , Base Sequence , Binding Sites , Cloning, Molecular , DNA, Complementary/isolation & purification , DNA-Binding Proteins/physiology , Dimerization , Erythroid-Specific DNA-Binding Factors , Humans , K562 Cells , MafF Transcription Factor , Molecular Sequence Data , NF-E2 Transcription Factor , NF-E2 Transcription Factor, p45 Subunit , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Response Elements , Tandem Repeat Sequences , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...