Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Beilstein J Org Chem ; 20: 155-161, 2024.
Article in English | MEDLINE | ID: mdl-38292044

ABSTRACT

An efficient and practical method for the synthesis of C5-brominated 8-aminoquinoline amides via a copper-promoted selective bromination of 8-aminoquinoline amides with alkyl bromides was developed. The reaction proceeds smoothly in dimethyl sulfoxide (DMSO) under air, employing activated and unactivated alkyl bromides as the halogenation reagents without additional external oxidants. This method features outstanding site selectivity, broad substrate scope, and excellent yields.

2.
Chem Asian J ; 18(18): e202300480, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37370258

ABSTRACT

Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules.

3.
Sci Rep ; 12(1): 21183, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36476762

ABSTRACT

L-nucleosides were the most important antiviral lead compounds because they can inhibit viral DNA polymerase and DNA synthesis of many viruses, whereas they may lead to mutations in DNA replication and cause genomic instability. In this study, we reported the replicative bypass of L-deoxynucleosides in recombinant DNA by restriction enzyme-mediated assays to examine their impact on DNA replication in vitro and in E. coli cells. The results showed that a template L-dC inhibited Taq DNA polymerase reaction, whereas it can be bypassed by Vent (exo-) DNA polymerase as well as in cell replication, inserting correct nucleotides opposite L-dC. L-dG can be bypassed by Taq DNA polymerase and in E. coli cells, maintaining insertion of correct incoming nucleotides, and L-dG induced mutagenic replication by Vent (exo-) DNA polymerase. In contrast, L-dA can induced mutagenic replication in vitro and in E. coli cells. MD simulations were performed to investigate how DNA polymerase affected replicative bypass and mutations when D-nucleosides replaced with L-nucleosides. This study will provide a basis for the ability to assess the cytotoxic and mutagenic properties of the L-nucleoside drugs.


Subject(s)
Escherichia coli , Escherichia coli/genetics , Taq Polymerase
4.
Phys Chem Chem Phys ; 24(43): 26853-26862, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36317503

ABSTRACT

The emergence and development of radical luminescent materials is a huge breakthrough toward high-performance organic light-emitting diodes (OLEDs) without spin-statistical limits. Herein, we design a series of radicals based on tris(2,4,6-trichlorophenyl)methyl (TTM) by combining skeleton-engineering and periphery-engineering strategies, and present some insights into how different chemical modifications can modulate the chemical stability and luminescence properties of radicals by quantum chemistry methods. Firstly, through the analysis of the geometric structure changes from the lowest doublet excited state (D1) to the doublet ground state (D0) states, the emission energy differences between the BN orientation isomers are explained, and it is revealed that the radical with a smaller dihedral angle difference can more effectively suppress the geometric relaxation of the excited states and bring a higher emission energy. Meanwhile, a comparison of the excited state properties in different radicals can help us to disclose the luminescence behavior, that is, the enhanced luminescent intensity of the radical is caused by the intensity borrowing between the charge transfer (CT) state and the dark locally excited (LE) state. In addition, an efficient algorithm for calculating the internal conversion rate (kIC) is introduced and implemented, and the differences in kIC values between designed radicals are explained. More specifically, the delocalization of hole and electron wave functions can reduce nonadiabatic coupling matrix elements (NACMEs), thus hindering the non-radiative decay process. Finally, the double-regulation of chemical stability and luminescence properties was realized through the synergistic effect of skeleton-engineering and periphery-engineering, and to screen the excellent doublet emitter (BN-41-MPTTM) theoretically.

5.
iScience ; 24(9): 102977, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34485859

ABSTRACT

The effective utility of physiologically active molecules is crucial in numerous biological processes. However, the regulation of enzyme functions through active substances remains challenging at present. Here, glutathione (GSH), produced in cells, was used to modulate the catalytic activity of thrombin without external stimulus. It was found that high concentrations of GSH was more conducive to initiate the cleavage of compound AzoDiTAB in the range of concentration used to mimic the difference between cancer and normal cells, which has practical implications for targeting cancel cells since GSH is overexpressed in cancer cells. Importantly, GSH treatment caused the deformation of G4 structure by cleaving AzoDiTAB and thus triggered the transition of thrombin from being free to be inhibited in complex biological systems. This work would open up a new route for the specific manipulation of enzyme-catalyzed systems in cancer cells.

7.
Org Lett ; 22(22): 9022-9028, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33151076

ABSTRACT

We describe herein a regioselective palladium(II)-catalyzed intermolecular hydroarylation of unactivated aliphatic alkenes with electronically and sterically diverse (hetero)arylsilanes under redox-neutral conditions. A removable bidentate 8-aminoquinoline auxiliary was readily employed to dictate the regioselectivity, prevent ß-hydride elimination, and facilitate protodepalladation. This silicon-based protocol features a broad substrate scope with excellent functional group compatibility and enables an expeditious route to a variety of γ-aryl butyric acid derivatives in good yields with exclusive anti-Markovnikov selectivity.

8.
Bioorg Chem ; 105: 104389, 2020 12.
Article in English | MEDLINE | ID: mdl-33120320

ABSTRACT

The isomerization of l-amino acids in peptides and proteins into d-configuration under physiological conditions would affect the physiological dysfunction and caused protein conformational diseases. The presence of d-amino acids might change the higher-order structure of proteins and triggered abnormal aggregation. In order to better understand this phenomenon and promote degradation, we systematically studied the enzymatic hydrolysis of a series of peptides obtained by replacing l-amino acids in different positions of template peptide KYNETWRSED with d-amino acids under the action of Protease K. The results showed that, compared with normal peptide, isomerization of different amino acids had different effects on the anti-enzymatic hydrolysis of the peptides, especially d-tryptophan at position 6, which significantly inhibited enzymatic hydrolysis. The analysis of the peptide cleavage site revealed that the efficiency of enzymatic hydrolysis mainly depended on the isomerization of the amino acids at a specific site of the peptide cleavage. Further studies showed that the enzymatic hydrolysis of substrates could be facilitated by optimized reaction conditions such as temperature, pH, addition of metal ions, and change of buffer. In this way the accumulation of disease-associated d-amino acid containing polypeptides/proteins could be prevented.


Subject(s)
Amino Acids/chemistry , Peptides/chemistry , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Isomerism , Kinetics , Models, Molecular
9.
Chem Res Toxicol ; 33(9): 2276-2285, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32812424

ABSTRACT

DNA damage can occur naturally or through environmental factors, leading to mutations in DNA replication and genomic instability in cells. Normally, natural d-nucleotides were selected by DNA polymerases. The template l-thymidine (l-T) has been shown to be bypassed by several types of DNA polymerases. However, DNA replication fidelity of nucleotide incorporation opposite l-thymidine in vivo remains unknown. Here, we constructed plasmids containing a restriction enzyme (PstI) recognition site in which the l-T lesion was site-specifically located within the PstI recognition sequence (CTGCAG). Further, we assessed the efficiencies of nucleotide incorporation opposite the l-T site and l-T lesion bypass replication in vitro and in vivo. We found that recombinants containing the l-T lesion site inhibited DNA replication. In addition, A was incorporated opposite the l-T lesion by routine PCR assay, whereas preference for nucleotide incorporation opposite the l-T site was A (13%), T (22%), C (46%), and G (19%), and no nucleotide insertion and deletions were detected in E. coli cells. In particular, a novel restriction enzyme-mediated method for detection of the mutagenic properties of DNA lesion was established, which allows us to readily detect restriction-digestion of the l-T-bearing plasmids. The study provided significant insight into how mirror-image nucleosides perturb the fidelity of DNA replication in vivo and whether they elicit mutagenic effects, which may help to understand both how DNA damage interferes with the flow of genetic information during DNA replication and development of diseases caused by gene mutation.


Subject(s)
DNA Replication/drug effects , DNA, Bacterial/drug effects , Escherichia coli/drug effects , Thymidine/pharmacology , DNA Damage , DNA Replication/genetics , DNA, Bacterial/genetics , Escherichia coli/cytology
10.
Mol Ther Nucleic Acids ; 21: 604-613, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32721880

ABSTRACT

Due to highly enzymatic d-stereoselectivity, l-nucleotides (l-2'-deoxynucleoside 5'-triphosphates [l-dNTPs]) are not natural targets of polymerases. In this study, we synthesized series of l-thymidine (l-T)-modified DNA strands and evaluated the processivity of nucleotide incorporation for transcription by T7 RNA polymerase (RNAP) with an l-T-containing template. When single l-T was introduced into the transcribed region, transcription proceeded to afford the full-length transcript with different efficiencies. However, introduction of l-T into the non-transcribed region did not exhibit a noticeable change in the transcription efficiency. Surprisingly, when two consecutive or internal l-Ts were introduced into the transcribed region, no transcripts were detected. Compared to natural template, significant lags in NTP incorporation into the template T+4/N and T+7/N (where the number corresponds to the site of l-T position, and + means downstream of the transcribed region) were detected by kinetic analysis. Furthermore, affinity of template T+4/N was almost the same with T/N, whereas affinity of T+7/N was apparently increased. Furthermore, no mismatch opposite to l-T in the template was detected in transcription reactions via gel fidelity analysis. These results demonstrate the effects of chiral l-T in DNA on the efficiency and fidelity of RNA transcription mediated by T7 RNAP, which provides important knowledge about how mirror-image thymidine perturbs the flow of genetic information during RNA transcription and development of diseases caused by gene mutation.

11.
J Am Chem Soc ; 142(27): 11791-11803, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32520550

ABSTRACT

We present a theoretical design of the singlet-fission (SF) interconversion between two hydrogen tautomers to attract attention to electronic devices such as switches in the SF field. We develop a tuned π-electron conjugation strategy based on single-hydrogen migration to introduce diradical character and yield low-lying E(T1) levels. Specifically, these objectives could be accomplished by moving one hydrogen from a dihydrogen-substituted pyrazine-fused ring to another unsubstituted pyrazine-fused ring in tetraazatetracenes. The predicted SF efficiency would be expected to exceed 120%. To guide future SF design development, one rule of thumb regarding the S0-state and T1-state emerges from our research: In the S0-state, single-hydrogen migration is crucial for effectively localized electrons, which are the key factor in the formation of diradicals. Conversely, single-hydrogen migration induces a large area of π-electron conjugation in the T1-state, which is completely applied to the electron-hole interaction in the S0 → T1 transition, thereby providing low-lying E(T1) levels. Furthermore, a series of hydrogen tautomers of tetraazaacenes have been proposed as diradicaloid SF switches to verify the reliability of the above rule of thumb. This study will not only help researchers in the photovoltaic field to obtain the desired E(T1) in the future but also broaden the application of hydrogen migration in photovoltaic switch research and supplement the SF database.

12.
Org Lett ; 22(7): 2663-2668, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32182081

ABSTRACT

We report a chelation-assisted C-H arylation of various indoles with sterically and electronically diverse (hetero)arylsilanes enabled by cost-effective Cp*-free cobalt catalysis. Key to the success of this strategy is the judicious choice of copper(II) fluoride as a bifunctional sliane activator and catalyst reoxidant. This methodology features a broad substrate scope and good functional group compatibility. The synthetic versatility of this protocol has been highlighted by the gram-scale synthesis and late-stage diversification of biologically active molecules.

13.
Nat Commun ; 11(1): 497, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31980641

ABSTRACT

Efficient conversion of carbon dioxide (CO2) into value-added products is essential for clean energy research. Design of stable, selective, and powerful electrocatalysts for CO2 reduction reaction (CO2RR) is highly desirable yet largely unmet. In this work, a series of metalloporphyrin-tetrathiafulvalene based covalent organic frameworks (M-TTCOFs) are designed. Tetrathiafulvalene, serving as electron donator or carrier, can construct an oriented electron transmission pathway with metalloporphyrin. Thus-obtained M-TTCOFs can serve as electrocatalysts with high FECO (91.3%, -0.7 V) and possess high cycling stability (>40 h). In addition, after exfoliation, the FECO value of Co-TTCOF nanosheets (~5 nm) is higher than 90% in a wide potential range from -0.6 to -0.9 V and the maximum FECO can reach up to almost 100% (99.7%, -0.8 V). The electrocatalytic CO2RR mechanisms are discussed and revealed by density functional theory calculations. This work paves a new way in exploring porous crystalline materials in electrocatalytic CO2RR.

14.
Food Technol Biotechnol ; 57(3): 418-425, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31866755

ABSTRACT

Excessive intake of beer could increase serum uric acid levels, leading to high risk of gout, which was previously attributed to high purine content in beer. Recent reports that purine-rich vegetables and bean products do not cause higher uric acid levels do not support this theory. Why excessive intake of beer could increase a high risk of gout has been unclear. Other factors affecting the accumulation of uric acid in the blood have been explored. Beer contains relatively high levels of d-amino acids due to the racemization of l-amino acids induced by food processing. d-amino acid was catalyzed by d-amino acid oxidase to produce H2O2, which is further oxidized in the presence of Fe2+ to produce hydroxyl radicals, resulting in DNA damage and formation of a large amount of purine bases, which are oxidized to uric acid by a series of enzymes. Some food ingredients, such as vitamins and I-, prompt d-amino acids to form uric acid. d-amino acids in beer are one of the key factors responsible for the increase in uric acid levels. The biological response of d-amino acids could explain gout occurrence in beer drinkers.

15.
Org Lett ; 21(22): 9045-9049, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31697086

ABSTRACT

A useful method for the enantioselective preparation of isoxazoline N-oxides via Pd-catalyzed asymmetric allylic cycloaddition of nitro-containing allylic carbonates has been developed. By using palladium complex in situ generated from Pd2(dba)3·CHCl3 and phosphoramidite L2 as a catalyst under mild conditions, the transformation afforded vinylated isoxazoline N-oxides in high yields with acceptably high enantioselectivities.

16.
Angew Chem Int Ed Engl ; 58(48): 17260-17264, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31557373

ABSTRACT

Over the past 200 years, the most famous and important heteroatom Keggin architecture in polyoxometalates has only been synthesized with Mo, W, V, or Nb. Now, the self-assembly of two phosphate (PO4 3- )-centered polyoxo-titanium clusters (PTCs) is presented, PTi16 and PTi12 , which display classic heteroatom Keggin and its trivacant structures, respectively. Because TiIV has lower oxidate state and larger ionic radius than MoVI , WVI , VV , and NbV , additional TiIV centres in these PTCs are used to stabilize the resultant heteroatom Keggin structures, as demonstrated by the cooresponding theoretical calculation results. These photoactive PTCs can be utilized as efficient photocatalysts for highly selective CO2 -to-HCOOH conversion. This new discovery indicates that the classic heteroatom Keggin family can be assembled with Ti, thus opening a research avenue for the development of PTC chemistry.

17.
Chemistry ; 25(69): 15830-15836, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31552686

ABSTRACT

The energy crisis and environmental pollution have forced scientists to explore alternative energy conversion and storage devices. The anodic reactions of these devices are all oxygen evolution reactions (OER), so the development of efficient OER electrocatalysts is of great significance. At the same time, understanding the reaction mechanism of OER is conducive to the rational design of efficient OER electrocatalysts. In general, catalytic active centers play a direct role in OER performance. In this paper, a series of stable bimetallic metal-organic frameworks (MOFs, named as Fe3 -Con -X2 , n=2, 3 and X=F, Cl, Br) with similar structure were synthesized by changing the halogen coordinated with the cobalt metal active center, aiming to investigate the influence of halogen substitution effect on OER performance. It was found that the OER activity of Fe3 -Co3 -F2 is much better than Fe3 -Co2 -Cl2 and Fe3 -Co2 -Br2 , indicating that the regulation of the electronegativity change of the coordination halogen atom can regulate the coordination electron structure of the metal active center, thereby achieving effective regulation of OER performance.

18.
J Org Chem ; 82(8): 4194-4202, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28326778

ABSTRACT

Pyrroles are an important group of heterocyclic compounds with a wide range of interesting properties, which have resulted in numerous applications in a variety of fields. Despite the importance of these compounds, there have been few reports in the literature pertaining to the synthesis of pyrroles from simple alkenes using a one-pot sequential 1,3-dipolar cycloaddition/aromatization reaction sequence. Herein, we report the development of a benzoyl peroxide-mediated oxidative dehydrogenative aromatization reaction for the construction of pyrroles. We subsequently developed a one-pot tandem reaction that combined this new method with a well-defined silver-catalyzed 1,3-dipolar cycloaddition reaction, thereby providing a practical method for the synthesis of multisubstituted pyrroles from easy available alkenes. The mechanism of this oxidative dehydrogenative aromatization reaction was also examined in detail.

19.
J Org Chem ; 81(11): 4856-60, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27192104

ABSTRACT

Two novel helicene-like molecules based on naphthotetrathiophene are successfully synthesized. All target molecules and intermediates are characterized by (1)H NMR, (13)C NMR, IR, and HRMS. Their electrochemical and photophysical properties are studied. The configurations of the molecules are optimized by DFT quantum calculations and UV-vis behaviors are also predicted to further understand the origin of different absorption bands. We believe the current work illustrated an efficient way for the design and synthesis of sophisticated structures with naphthotetrathiophene as building blocks.

20.
ChemSusChem ; 9(10): 1085-9, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27100272

ABSTRACT

Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.


Subject(s)
Carbon Dioxide/chemistry , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Catalysis , Electrochemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...