Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Genome Med ; 15(1): 55, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37475004

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 4/6 inhibitor (CDK4/6) therapy plus endocrine therapy (ET) is an effective treatment for patients with hormone receptor-positive/human epidermal receptor 2-negative metastatic breast cancer (HR+/HER2- MBC); however, resistance is common and poorly understood. A comprehensive genomic and transcriptomic analysis of pretreatment and post-treatment tumors from patients receiving palbociclib plus ET was performed to delineate molecular mechanisms of drug resistance. METHODS: Tissue was collected from 89 patients with HR+/HER2- MBC, including those with recurrent and/or metastatic disease, receiving palbociclib plus an aromatase inhibitor or fulvestrant at Samsung Medical Center and Seoul National University Hospital from 2017 to 2020. Tumor biopsy and blood samples obtained at pretreatment, on-treatment (6 weeks and/or 12 weeks), and post-progression underwent RNA sequencing and whole-exome sequencing. Cox regression analysis was performed to identify the clinical and genomic variables associated with progression-free survival. RESULTS: Novel markers associated with poor prognosis, including genomic scar features caused by homologous repair deficiency (HRD), estrogen response signatures, and four prognostic clusters with distinct molecular features were identified. Tumors with TP53 mutations co-occurring with a unique HRD-high cluster responded poorly to palbociclib plus ET. Comparisons of paired pre- and post-treatment samples revealed that tumors became enriched in APOBEC mutation signatures, and many switched to aggressive molecular subtypes with estrogen-independent characteristics. We identified frequent genomic alterations upon disease progression in RB1, ESR1, PTEN, and KMT2C. CONCLUSIONS: We identified novel molecular features associated with poor prognosis and molecular mechanisms that could be targeted to overcome resistance to CKD4/6 plus ET. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03401359. The trial was posted on 18 January 2018 and registered prospectively.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Multiomics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/analysis , Receptor, ErbB-2/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Receptors, Estrogen/genetics , Receptors, Estrogen/analysis , Receptors, Estrogen/therapeutic use , Estrogens/therapeutic use
2.
Mol Cancer Ther ; 21(9): 1462-1472, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35793468

ABSTRACT

Extra domain B splice variant of fibronectin (EDB+FN) is an extracellular matrix protein (ECM) deposited by tumor-associated fibroblasts, and is associated with tumor growth, angiogenesis, and invasion. We hypothesized that EDB+FN is a safe and abundant target for therapeutic intervention with an antibody-drug conjugate (ADC). We describe the generation, pharmacology, mechanism of action, and safety profile of an ADC specific for EDB+FN (EDB-ADC). EDB+FN is broadly expressed in the stroma of pancreatic, non-small cell lung (NSCLC), breast, ovarian, head and neck cancers, whereas restricted in normal tissues. In patient-derived xenograft (PDX), cell-line xenograft (CLX), and mouse syngeneic tumor models, EDB-ADC, conjugated to auristatin Aur0101 through site-specific technology, demonstrated potent antitumor growth inhibition. Increased phospho-histone H3, a pharmacodynamic biomarker of response, was observed in tumor cells distal to the target site of tumor ECM after EDB-ADC treatment. EDB-ADC potentiated infiltration of immune cells, including CD3+ T lymphocytes into the tumor, providing rationale for the combination of EDB-ADC with immune checkpoint therapy. EDB-ADC and anti-PD-L1 combination in a syngeneic breast tumor model led to enhanced antitumor activity with sustained tumor regressions. In nonclinical safety studies in nonhuman primates, EDB-ADC had a well-tolerated safety profile without signs of either on-target toxicity or the off-target effects typically observed with ADCs that are conjugated through conventional conjugation methods. These data highlight the potential for EDB-ADC to specifically target the tumor microenvironment, provide robust therapeutic benefits against multiple tumor types, and enhance activity antitumor in combination with checkpoint blockade.


Subject(s)
Breast Neoplasms , Immunoconjugates , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Fibronectins/metabolism , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mice , Neovascularization, Pathologic/metabolism , Tumor Microenvironment , Xenograft Model Antitumor Assays
3.
Cancer Cell ; 39(10): 1404-1421.e11, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34520734

ABSTRACT

The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.


Subject(s)
Cell Cycle/drug effects , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Neoplasms/drug therapy , Female , Humans , Male , Neoplasms/immunology
4.
Nat Commun ; 11(1): 6175, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33268821

ABSTRACT

To elucidate the effects of neoadjuvant chemotherapy (NAC), we conduct whole transcriptome profiling coupled with histopathology analyses of a longitudinal breast cancer cohort of 146 patients including 110 pairs of serial tumor biopsies collected before treatment, after the first cycle of treatment and at the time of surgery. Here, we show that cytotoxic chemotherapies induce dynamic changes in the tumor immune microenvironment that vary by subtype and pathologic response. Just one cycle of treatment induces an immune stimulatory microenvironment harboring more tumor infiltrating lymphocytes (TILs) and up-regulation of inflammatory signatures predictive of response to anti-PD1 therapies while residual tumors are immune suppressed at end-of-treatment compared to the baseline. Increases in TILs and CD8+ T cell proportions in response to NAC are independently associated with pathologic complete response. Further, on-treatment immune response is more predictive of treatment outcome than immune features in paired baseline samples although these are strongly correlated.


Subject(s)
B7-H1 Antigen/genetics , Breast Neoplasms/drug therapy , Carcinoma, Ductal, Breast/drug therapy , Gene Expression Regulation, Neoplastic , Lymphocytes, Tumor-Infiltrating/drug effects , Neoadjuvant Therapy/methods , Anthracyclines/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/mortality , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/immunology , Carcinoma, Ductal, Breast/mortality , Cell Cycle Proteins/genetics , Cell Cycle Proteins/immunology , Cyclophosphamide/therapeutic use , Disease-Free Survival , Docetaxel/therapeutic use , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/immunology , Female , Gene Expression Profiling , Humans , Immunity, Innate , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Longitudinal Studies , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Neoplasm, Residual , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Trastuzumab/therapeutic use , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
5.
Gastroenterology ; 159(6): 2203-2220.e14, 2020 12.
Article in English | MEDLINE | ID: mdl-32814112

ABSTRACT

BACKGROUND AND AIMS: The pattern of genetic alterations in cancer driver genes in patients with hepatocellular carcinoma (HCC) is highly diverse, which partially explains the low efficacy of available therapies. In spite of this, the existing mouse models only recapitulate a small portion of HCC inter-tumor heterogeneity, limiting the understanding of the disease and the nomination of personalized therapies. Here, we aimed at establishing a novel collection of HCC mouse models that captured human HCC diversity. METHODS: By performing hydrodynamic tail-vein injections, we tested the impact of altering a well-established HCC oncogene (either MYC or ß-catenin) in combination with an additional alteration in one of eleven other genes frequently mutated in HCC. Of the 23 unique pairs of genetic alterations that we interrogated, 9 were able to induce HCC. The established HCC mouse models were characterized at histopathological, immune, and transcriptomic level to identify the unique features of each model. Murine HCC cell lines were generated from each tumor model, characterized transcriptionally, and used to identify specific therapies that were validated in vivo. RESULTS: Cooperation between pairs of driver genes produced HCCs with diverse histopathology, immune microenvironments, transcriptomes, and drug responses. Interestingly, MYC expression levels strongly influenced ß-catenin activity, indicating that inter-tumor heterogeneity emerges not only from specific combinations of genetic alterations but also from the acquisition of expression-dependent phenotypes. CONCLUSIONS: This novel collection of murine HCC models and corresponding cell lines establishes the role of driver genes in diverse contexts and enables mechanistic and translational studies.


Subject(s)
Carcinoma, Hepatocellular/genetics , Genetic Heterogeneity , Proto-Oncogenes/genetics , Animals , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Computational Biology , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/immunology , Humans , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Male , Mice , Mice, Transgenic , Tumor Escape/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
6.
Breast Cancer Res ; 21(1): 147, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31856876

ABSTRACT

BACKGROUND: Heterogeneity of immune gene expression patterns of luminal breast cancer (BC), which is clinically heterogeneous and overall considered as low immunogenic, has not been well studied especially in non-European populations. Here, we aimed at characterizing the immune gene expression profile of luminal BC in an Asian population and associating it with patient characteristics and tumor genomic features. METHODS: We performed immune gene expression profiling of tumor and adjacent normal tissue in 92 luminal BC patients from Hong Kong using RNA-sequencing data and used unsupervised consensus clustering to stratify tumors. We then used luminal patients from The Cancer Genome Atlas (TCGA, N = 564) and a Korean breast cancer study (KBC, N = 112) as replication datasets. RESULTS: Based on the expression of 130 immune-related genes, luminal tumors were stratified into three distinct immune subtypes. Tumors in one subtype showed higher level of tumor-infiltrating lymphocytes (TILs), characterized by T cell gene activation, higher expression of immune checkpoint genes, higher nonsynonymous mutation burden, and higher APOBEC-signature mutations, compared with other luminal tumors. The high-TIL subtype was also associated with lower ESR1/ESR2 expression ratio and increasing body mass index. The comparison of the immune profile in tumor and matched normal tissue suggested a tumor-derived activation of specific immune responses, which was only seen in high-TIL patients. Tumors in a second subtype were characterized by increased expression of interferon-stimulated genes and enrichment for TP53 somatic mutations. The presence of three immune subtypes within luminal BC was replicated in TCGA and KBC, although the pattern was more similar in Asian populations. The germline APOBEC3B deletion polymorphism, which is prevalent in East Asian populations and was previously linked to immune activation, was not associated with immune subtypes in our study. This result does not support the hypothesis that the germline APOBEC3B deletion polymorphism is the driving force for immune activation in breast tumors in Asian populations. CONCLUSION: Our findings suggest that immune gene expression and associated genomic features could be useful to further stratify luminal BC beyond the current luminal A/B classification and a subset of luminal BC patients may benefit from checkpoint immunotherapy, at least in Asian populations.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/pathology , Gene Expression Profiling , Immunity/genetics , Transcriptome , Biomarkers, Tumor , Computational Biology/methods , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mutation , Reproducibility of Results , Tumor Microenvironment
7.
Nat Commun ; 9(1): 1725, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29713003

ABSTRACT

Breast cancer (BC) in the Asia Pacific regions is enriched in younger patients and rapidly rising in incidence yet its molecular bases remain poorly characterized. Here we analyze the whole exomes and transcriptomes of 187 primary tumors from a Korean BC cohort (SMC) enriched in pre-menopausal patients and perform systematic comparison with a primarily Caucasian and post-menopausal BC cohort (TCGA). SMC harbors higher proportions of HER2+ and Luminal B subtypes, lower proportion of Luminal A with decreased ESR1 expression compared to TCGA. We also observe increased mutation prevalence affecting BRCA1, BRCA2, and TP53 in SMC with an enrichment of a mutation signature linked to homologous recombination repair deficiency in TNBC. Finally, virtual microdissection and multivariate analyses reveal that Korean BC status is independently associated with increased TIL and decreased TGF-ß signaling expression signatures, suggesting that younger Asian BCs harbor more immune-active microenvironment than western BCs.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal/genetics , Carcinoma, Lobular/genetics , Transcriptome , Adult , Asian People , BRCA1 Protein/genetics , BRCA1 Protein/immunology , BRCA2 Protein/genetics , BRCA2 Protein/immunology , Biomarkers, Tumor/immunology , Breast Neoplasms/ethnology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Carcinoma, Ductal/ethnology , Carcinoma, Ductal/immunology , Carcinoma, Ductal/pathology , Carcinoma, Lobular/ethnology , Carcinoma, Lobular/immunology , Carcinoma, Lobular/pathology , Cohort Studies , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/immunology , Female , Humans , Middle Aged , Neoplasm Staging , Postmenopause , Premenopause , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Tumor Microenvironment/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , White People , Exome Sequencing
8.
Pac Symp Biocomput ; 23: 1-7, 2018.
Article in English | MEDLINE | ID: mdl-29218864

ABSTRACT

As the impact of genetics, genomics, and bioinformatics on drug discovery has been increasingly recognized, this session of the 2018 Pacific Symposium on Biocomputing (PSB) aims to facilitate scientific discussions between academia and pharmaceutical industry on how to best apply genetics, genomics and bioinformatics to enable drug discovery. The selected papers focus on developing and applying computational approaches to understand drug mechanisms of action and develop drug combination strategies, to enable in silico drug screening, and to further delineate disease pathways for target identification and validation.

9.
Nat Commun ; 8: 15081, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28474673

ABSTRACT

Single-cell transcriptome profiling of tumour tissue isolates allows the characterization of heterogeneous tumour cells along with neighbouring stromal and immune cells. Here we adopt this powerful approach to breast cancer and analyse 515 cells from 11 patients. Inferred copy number variations from the single-cell RNA-seq data separate carcinoma cells from non-cancer cells. At a single-cell resolution, carcinoma cells display common signatures within the tumour as well as intratumoral heterogeneity regarding breast cancer subtype and crucial cancer-related pathways. Most of the non-cancer cells are immune cells, with three distinct clusters of T lymphocytes, B lymphocytes and macrophages. T lymphocytes and macrophages both display immunosuppressive characteristics: T cells with a regulatory or an exhausted phenotype and macrophages with an M2 phenotype. These results illustrate that the breast cancer transcriptome has a wide range of intratumoral heterogeneity, which is shaped by the tumour cells and immune cells in the surrounding microenvironment.


Subject(s)
B-Lymphocytes/metabolism , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/metabolism , T-Lymphocytes/metabolism , Triple Negative Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , DNA Copy Number Variations , Female , Gene Expression Profiling , Humans , Lymph Nodes/metabolism , Lymph Nodes/pathology , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Exome Sequencing
10.
J Thorac Oncol ; 11(12): 2129-2140, 2016 12.
Article in English | MEDLINE | ID: mdl-27615396

ABSTRACT

INTRODUCTION: The incidence rate of lung adenocarcinoma (LUAD), the predominant histological subtype of lung cancer, is elevated in Asians, particularly in female nonsmokers. The mutation patterns in LUAD in Asians might be distinct from those in LUAD in whites. METHODS: We profiled 271 resected LUAD tumors (mainly stage I) to characterize the genomic landscape of LUAD in Asians with a focus on female nonsmokers. RESULTS: Mutations in EGFR, KRAS, erb-b2 receptor tyrosine kinase 2 gene (ERBB2), and BRAF; gene fusions involving anaplastic lymphoma receptor tyrosine kinase gene (ALK), ROS1, and ret proto-oncogene (RET); and Met Proto-Oncogene Tyrosine Kinase (MET) exon 14 skipping were the major drivers in LUAD in Asians, exhibiting mutually exclusive and differing prevalence from those reported in studies of LUAD in non-Asians. In addition, we identified a novel mutational signature of XNX (the mutated base N in the middle flanked by two identical bases at the 5' and 3' positions) that was overrepresented in LUAD tumors in nonsmokers and negatively correlated with the overall mutational frequency. CONCLUSIONS: In this cohort, approximately 85% of individuals have known driver mutations (EGFR 59.4%, KRAS 7.4%, ALK 7.4%, ERBB2 2.6%, ROS1 2.2%, RET 2.2%, MET 1.8%, BRAF 1.1%, and NRAS 0.4%). Seventy percent of smokers and 90% of nonsmokers had defined oncogenic drivers matching the U.S. Food and Drug Administration-approved targeted therapies.


Subject(s)
Adenocarcinoma/genetics , Asian People/genetics , Carcinogenesis/genetics , Lung Neoplasms/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Adult , Aged , Aged, 80 and over , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Proto-Oncogene Mas , Young Adult
12.
Pac Symp Biocomput ; : 10-9, 2015.
Article in English | MEDLINE | ID: mdl-25592564

ABSTRACT

The Cell Index Database, (CELLX) (http://cellx.sourceforge.net) provides a computational framework for integrating expression, copy number variation, mutation, compound activity, and meta data from cancer cells. CELLX provides the computational biologist a quick way to perform routine analyses as well as the means to rapidly integrate data for offline analysis. Data is accessible through a web interface which utilizes R to generate plots and perform clustering, correlations, and statistical tests for associations within and between data types for ~20,000 samples from TCGA, CCLE, Sanger, GSK, GEO, GTEx, and other public sources. We show how CELLX supports precision oncology through indications discovery, biomarker evaluation, and cell line screening analysis.


Subject(s)
Databases, Genetic , Neoplasms/genetics , Software , Biomarkers, Tumor/genetics , Cell Line, Tumor , Computational Biology , Humans , Internet , Neoplasms/therapy , Precision Medicine
13.
Genomics ; 103(2-3): 189-203, 2014.
Article in English | MEDLINE | ID: mdl-24462510

ABSTRACT

Elucidating the molecular basis of hepatocellular carcinoma (HCC) is crucial to developing targeted diagnostics and therapies for this deadly disease. The landscape of somatic genomic rearrangements (GRs), which can lead to oncogenic gene fusions, remains poorly characterized in HCC. We have predicted 4314 GRs including large-scale insertions, deletions, inversions and translocations based on the whole-genome sequencing data for 88 primary HCC tumor/non-tumor tissues. We identified chromothripsis in 5 HCC genomes (5.7%) recurrently affecting chromosomal arms 1q and 8q. Albumin (ALB) was found to harbor GRs, deactivating mutations and deletions in 10% of cohort. Integrative analysis identified a pattern of paired intra-chromosomal translocations flanking focal amplifications and asymmetrical patterns of copy number variation flanking breakpoints of translocations. Furthermore, we predicted 260 gene fusions which frequently result in aberrant over-expression of the 3' genes in tumors and validated 18 gene fusions, including recurrent fusion (2/88) of ABCB11 and LRP2.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Rearrangement , Genome, Human , Liver Neoplasms/genetics , Translocation, Genetic , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 8/genetics , Cohort Studies , Female , Genome-Wide Association Study/methods , Humans , Male
14.
Genome Res ; 23(9): 1422-33, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23788652

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease.


Subject(s)
Carcinoma, Hepatocellular/genetics , Genome, Human , Liver Neoplasms/genetics , Mutation , Amino Acid Sequence , Carcinoma, Hepatocellular/virology , DNA, Viral/genetics , Female , Hepatitis B virus/genetics , Humans , Janus Kinase 1/genetics , Liver Neoplasms/virology , Male , Molecular Sequence Data , STAT Transcription Factors/genetics , Sequence Analysis, DNA , Tumor Suppressor Protein p53/genetics , Virus Integration , Wnt Signaling Pathway/genetics , beta Catenin/genetics
15.
Cancer Cell ; 23(5): 603-17, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23680147

ABSTRACT

The human epidermal growth factor receptor (HER) family of tyrosine kinases is deregulated in multiple cancers either through amplification, overexpression, or mutation. ERBB3/HER3, the only member with an impaired kinase domain, although amplified or overexpressed in some cancers, has not been reported to carry oncogenic mutations. Here, we report the identification of ERBB3 somatic mutations in ~11% of colon and gastric cancers. We found that the ERBB3 mutants transformed colonic and breast epithelial cells in a ligand-independent manner. However, the mutant ERBB3 oncogenic activity was dependent on kinase-active ERBB2. Furthermore, we found that anti-ERBB antibodies and small molecule inhibitors effectively blocked mutant ERBB3-mediated oncogenic signaling and disease progression in vivo.


Subject(s)
Colonic Neoplasms/genetics , Mutation , Receptor, ErbB-3/genetics , Stomach Neoplasms/genetics , Binding Sites , Cell Proliferation , Cell Survival/genetics , Cell Transformation, Neoplastic/genetics , Gene Knockdown Techniques , Humans , Models, Molecular , Protein Structure, Tertiary , Receptor, ErbB-3/metabolism , Receptor, ErbB-3/physiology
16.
Nat Genet ; 44(7): 765-9, 2012 May 27.
Article in English | MEDLINE | ID: mdl-22634754

ABSTRACT

To survey hepatitis B virus (HBV) integration in liver cancer genomes, we conducted massively parallel sequencing of 81 HBV-positive and 7 HBV-negative hepatocellular carcinomas (HCCs) and adjacent normal tissues. We found that HBV integration is observed more frequently in the tumors (86.4%) than in adjacent liver tissues (30.7%). Copy-number variations (CNVs) were significantly increased at HBV breakpoint locations where chromosomal instability was likely induced. Approximately 40% of HBV breakpoints within the HBV genome were located within a 1,800-bp region where the viral enhancer, X gene and core gene are located. We also identified recurrent HBV integration events (in ≥ 4 HCCs) that were validated by RNA sequencing (RNA-seq) and Sanger sequencing at the known and putative cancer-related TERT, MLL4 and CCNE1 genes, which showed upregulated gene expression in tumor versus normal tissue. We also report evidence that suggests that the number of HBV integrations is associated with patient survival.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Hepatitis B virus/genetics , Liver Neoplasms/genetics , Liver Neoplasms/virology , Virus Integration/genetics , Base Sequence , Chromosomal Instability/genetics , Cyclin E/genetics , DNA Copy Number Variations/genetics , DNA, Viral/genetics , DNA-Binding Proteins/genetics , Female , Histone-Lysine N-Methyltransferase , Humans , Male , Middle Aged , Molecular Sequence Data , Oncogene Proteins/genetics , RNA, Viral/genetics , Survival Rate , Telomerase/genetics
17.
Nat Genet ; 43(12): 1219-23, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-22037554

ABSTRACT

Gastric cancer is a heterogeneous disease with multiple environmental etiologies and alternative pathways of carcinogenesis. Beyond mutations in TP53, alterations in other genes or pathways account for only small subsets of the disease. We performed exome sequencing of 22 gastric cancer samples and identified previously unreported mutated genes and pathway alterations; in particular, we found genes involved in chromatin modification to be commonly mutated. A downstream validation study confirmed frequent inactivating mutations or protein deficiency of ARID1A, which encodes a member of the SWI-SNF chromatin remodeling family, in 83% of gastric cancers with microsatellite instability (MSI), 73% of those with Epstein-Barr virus (EBV) infection and 11% of those that were not infected with EBV and microsatellite stable (MSS). The mutation spectrum for ARID1A differs between molecular subtypes of gastric cancer, and mutation prevalence is negatively associated with mutations in TP53. Clinically, ARID1A alterations were associated with better prognosis in a stage-independent manner. These results reveal the genomic landscape, and highlight the importance of chromatin remodeling, in the molecular taxonomy of gastric cancer.


Subject(s)
Exome , Mutation , Nuclear Proteins/genetics , Stomach Neoplasms/genetics , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Cell Cycle Proteins/genetics , Chromatin Assembly and Disassembly , DNA-Binding Proteins , Female , Genes, Neoplasm , Genetic Association Studies , Humans , Intercellular Junctions , Male , Microsatellite Instability , Middle Aged , Neoplasm Staging , Prognosis , Sequence Analysis, DNA , Signal Transduction , Stomach Neoplasms/diagnosis , Stomach Neoplasms/mortality , Young Adult
18.
BMC Med Genomics ; 4: 11, 2011 Jan 24.
Article in English | MEDLINE | ID: mdl-21261984

ABSTRACT

BACKGROUND: Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. METHODS: We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. RESULTS: Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%.We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer cell lines. CONCLUSIONS: Deep transcriptional sequencing and analysis with targeted and spliced alignment methods can effectively identify TIC events across the genome in individual tissues. Prostate and reference samples exhibit a wide range of TIC events, involving more genes than estimated previously using ESTs. Tissue specificity of TIC events is correlated with expression patterns of the upstream gene. Some TIC events, such as MSMB-NCOA4, may play functional roles in cancer.


Subject(s)
Adenocarcinoma/genetics , Gene Fusion , Prostatic Neoplasms/genetics , Sequence Analysis, RNA/methods , Adenocarcinoma/pathology , Base Sequence , Comparative Genomic Hybridization/methods , Databases, Genetic , Expressed Sequence Tags , Humans , Male , Prostatic Neoplasms/pathology , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/methods
19.
Mol Biosyst ; 6(10): 1782-90, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20714644

ABSTRACT

The determinants of binding specificities of peptide recognition domains and their evolution remain important problems in molecular systems biology. Here, we present a new methodology to analyze the coevolution between a domain and its ligands by combining high-throughput phage display with deep sequencing. First, from a library of PDZ domains with diversity introduced at ten positions in the binding site, we evolved domains for binding to 15 distinct peptide ligands. Interestingly, for a given peptide many different functional domains emerged, which exhibited only limited sequence homology, showing that many different binding sites can recognize a given peptide. Subsequently, we used peptide-phage libraries and deep sequencing to map the specificity profiles of these evolved domains at high resolution, and we found that the domains recognize their cognate peptides with high affinity but low specificity. Our analysis reveals two aspects of evolution of new binding specificities. First, we were able to identify some common features amongst domains raised against a common peptide. Second, our analysis suggests that cooperative interactions between multiple binding site residues lead to a diversity of binding profiles with considerable plasticity. The details of intramolecular cooperativity remain to be elucidated, but nonetheless, we have established a general methodology that can be used to explore protein evolution in a systematic yet rapid manner.


Subject(s)
Bacteriophages/genetics , Evolution, Molecular , PDZ Domains , Amino Acid Sequence , Ligands , Peptide Library , Peptides/metabolism , Protein Binding
20.
Nature ; 466(7308): 869-73, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20668451

ABSTRACT

The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.


Subject(s)
Genes, Neoplasm/genetics , Mutation/genetics , Neoplasms/genetics , Neoplasms/metabolism , Signal Transduction/genetics , Breast Neoplasms/classification , Breast Neoplasms/genetics , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Female , GTP-Binding Protein alpha Subunits/genetics , Humans , Lung Neoplasms/classification , Lung Neoplasms/genetics , MAP Kinase Kinase 4/genetics , Male , Neoplasms/enzymology , Neoplasms/pathology , Ovarian Neoplasms/classification , Ovarian Neoplasms/genetics , Prostatic Neoplasms/classification , Prostatic Neoplasms/genetics , Protein Kinases/genetics , Receptors, G-Protein-Coupled/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...